Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
60 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
8 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phantom -- A RL-driven multi-agent framework to model complex systems (2210.06012v3)

Published 12 Oct 2022 in cs.AI and cs.MA

Abstract: Agent based modelling (ABM) is a computational approach to modelling complex systems by specifying the behaviour of autonomous decision-making components or agents in the system and allowing the system dynamics to emerge from their interactions. Recent advances in the field of Multi-agent reinforcement learning (MARL) have made it feasible to study the equilibrium of complex environments where multiple agents learn simultaneously. However, most ABM frameworks are not RL-native, in that they do not offer concepts and interfaces that are compatible with the use of MARL to learn agent behaviours. In this paper, we introduce a new open-source framework, Phantom, to bridge the gap between ABM and MARL. Phantom is an RL-driven framework for agent-based modelling of complex multi-agent systems including, but not limited to economic systems and markets. The framework aims to provide the tools to simplify the ABM specification in a MARL-compatible way - including features to encode dynamic partial observability, agent utility functions, heterogeneity in agent preferences or types, and constraints on the order in which agents can act (e.g. Stackelberg games, or more complex turn-taking environments). In this paper, we present these features, their design rationale and present two new environments leveraging the framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Leo Ardon (15 papers)
  2. Jared Vann (9 papers)
  3. Deepeka Garg (5 papers)
  4. Tom Spooner (1 paper)
  5. Sumitra Ganesh (31 papers)
Citations (7)