Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning by Asking Questions for Knowledge-based Novel Object Recognition (2210.05879v1)

Published 12 Oct 2022 in cs.CV

Abstract: In real-world object recognition, there are numerous object classes to be recognized. Conventional image recognition based on supervised learning can only recognize object classes that exist in the training data, and thus has limited applicability in the real world. On the other hand, humans can recognize novel objects by asking questions and acquiring knowledge about them. Inspired by this, we study a framework for acquiring external knowledge through question generation that would help the model instantly recognize novel objects. Our pipeline consists of two components: the Object Classifier, which performs knowledge-based object recognition, and the Question Generator, which generates knowledge-aware questions to acquire novel knowledge. We also propose a question generation strategy based on the confidence of the knowledge-aware prediction of the Object Classifier. To train the Question Generator, we construct a dataset that contains knowledge-aware questions about objects in the images. Our experiments show that the proposed pipeline effectively acquires knowledge about novel objects compared to several baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kohei Uehara (9 papers)
  2. Tatsuya Harada (142 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.