Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Motion Aware Self-Supervision for Generic Event Boundary Detection (2210.05574v2)

Published 11 Oct 2022 in cs.CV, cs.AI, and cs.LG

Abstract: The task of Generic Event Boundary Detection (GEBD) aims to detect moments in videos that are naturally perceived by humans as generic and taxonomy-free event boundaries. Modeling the dynamically evolving temporal and spatial changes in a video makes GEBD a difficult problem to solve. Existing approaches involve very complex and sophisticated pipelines in terms of architectural design choices, hence creating a need for more straightforward and simplified approaches. In this work, we address this issue by revisiting a simple and effective self-supervised method and augment it with a differentiable motion feature learning module to tackle the spatial and temporal diversities in the GEBD task. We perform extensive experiments on the challenging Kinetics-GEBD and TAPOS datasets to demonstrate the efficacy of the proposed approach compared to the other self-supervised state-of-the-art methods. We also show that this simple self-supervised approach learns motion features without any explicit motion-specific pretext task.

Citations (2)

Summary

We haven't generated a summary for this paper yet.