Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Follow-up Attention: An Empirical Study of Developer and Neural Model Code Exploration (2210.05506v2)

Published 11 Oct 2022 in cs.SE, cs.AI, cs.HC, and cs.LG

Abstract: Recent neural models of code, such as OpenAI Codex and AlphaCode, have demonstrated remarkable proficiency at code generation due to the underlying attention mechanism. However, it often remains unclear how the models actually process code, and to what extent their reasoning and the way their attention mechanism scans the code matches the patterns of developers. A poor understanding of the model reasoning process limits the way in which current neural models are leveraged today, so far mostly for their raw prediction. To fill this gap, this work studies how the processed attention signal of three open LLMs - CodeGen, InCoder and GPT-J - agrees with how developers look at and explore code when each answers the same sensemaking questions about code. Furthermore, we contribute an open-source eye-tracking dataset comprising 92 manually-labeled sessions from 25 developers engaged in sensemaking tasks. We empirically evaluate five heuristics that do not use the attention and ten attention-based post-processing approaches of the attention signal of CodeGen against our ground truth of developers exploring code, including the novel concept of follow-up attention which exhibits the highest agreement between model and human attention. Our follow-up attention method can predict the next line a developer will look at with 47% accuracy. This outperforms the baseline prediction accuracy of 42.3%, which uses the session history of other developers to recommend the next line. These results demonstrate the potential of leveraging the attention signal of pre-trained models for effective code exploration.

Citations (3)

Summary

We haven't generated a summary for this paper yet.