Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Graph Transformer with Adaptive Node Sampling (2210.03930v1)

Published 8 Oct 2022 in cs.LG and cs.AI

Abstract: The Transformer architecture has achieved remarkable success in a number of domains including natural language processing and computer vision. However, when it comes to graph-structured data, transformers have not achieved competitive performance, especially on large graphs. In this paper, we identify the main deficiencies of current graph transformers:(1) Existing node sampling strategies in Graph Transformers are agnostic to the graph characteristics and the training process. (2) Most sampling strategies only focus on local neighbors and neglect the long-range dependencies in the graph. We conduct experimental investigations on synthetic datasets to show that existing sampling strategies are sub-optimal. To tackle the aforementioned problems, we formulate the optimization strategies of node sampling in Graph Transformer as an adversary bandit problem, where the rewards are related to the attention weights and can vary in the training procedure. Meanwhile, we propose a hierarchical attention scheme with graph coarsening to capture the long-range interactions while reducing computational complexity. Finally, we conduct extensive experiments on real-world datasets to demonstrate the superiority of our method over existing graph transformers and popular GNNs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zaixi Zhang (34 papers)
  2. Qi Liu (485 papers)
  3. Qingyong Hu (29 papers)
  4. Chee-Kong Lee (16 papers)
Citations (69)