Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Gradient-Type Methods For Decentralized Optimization Problems With Polyak-Łojasiewicz Condition Over Time-Varying Networks (2210.03810v2)

Published 7 Oct 2022 in math.OC

Abstract: This paper focuses on the decentralized optimization (minimization and saddle point) problems with objective functions that satisfy Polyak-{\L}ojasiewicz condition (PL-condition). The first part of the paper is devoted to the minimization problem of the sum-type cost functions. In order to solve a such class of problems, we propose a gradient descent type method with a consensus projection procedure and the inexact gradient of the objectives. Next, in the second part, we study the saddle-point problem (SPP) with a structure of the sum, with objectives satisfying the two-sided PL-condition. To solve such SPP, we propose a generalization of the Multi-step Gradient Descent Ascent method with a consensus procedure, and inexact gradients of the objective function with respect to both variables. Finally, we present some of the numerical experiments, to show the efficiency of the proposed algorithm for the robust least squares problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.