Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Stochastic Resource Allocation for Distributed Quantum Computing (2210.02886v1)

Published 16 Sep 2022 in cs.DC and quant-ph

Abstract: With the advent of interconnected quantum computers, i.e., distributed quantum computing (DQC), multiple quantum computers can now collaborate via quantum networks to perform massively complex computational tasks. However, DQC faces problems sharing quantum information because it cannot be cloned or duplicated between quantum computers. Thanks to advanced quantum mechanics, quantum computers can teleport quantum information across quantum networks. However, challenges to utilizing efficiently quantum resources, e.g., quantum computers and quantum channels, arise in DQC due to their capabilities and properties, such as uncertain qubit fidelity and quantum channel noise. In this paper, we propose a resource allocation scheme for DQC based on stochastic programming to minimize the total deployment cost for quantum resources. Essentially, the two-stage stochastic programming model is formulated to handle the uncertainty of quantum computing demands, computing power, and fidelity in quantum networks. The performance evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers while minimizing the overall cost of provisioning under uncertainty.

Citations (9)

Summary

We haven't generated a summary for this paper yet.