2000 character limit reached
Game-theoretic statistics and safe anytime-valid inference (2210.01948v2)
Published 4 Oct 2022 in math.ST, cs.GT, cs.IT, math.IT, stat.ME, and stat.TH
Abstract: Safe anytime-valid inference (SAVI) provides measures of statistical evidence and certainty -- e-processes for testing and confidence sequences for estimation -- that remain valid at all stopping times, accommodating continuous monitoring and analysis of accumulating data and optional stopping or continuation for any reason. These measures crucially rely on test martingales, which are nonnegative martingales starting at one. Since a test martingale is the wealth process of a player in a betting game, SAVI centrally employs game-theoretic intuition, language and mathematics. We summarize the SAVI goals and philosophy, and report recent advances in testing composite hypotheses and estimating functionals in nonparametric settings.
- {barticle}[author] \bauthor\bsnmAbbasi-Yadkori, \bfnmYasin\binitsY., \bauthor\bsnmPál, \bfnmDávid\binitsD. and \bauthor\bsnmSzepesvári, \bfnmCsaba\binitsC. (\byear2011). \btitleImproved algorithms for linear stochastic bandits. \bjournalAdvances in Neural Information Processing Systems \bvolume24. \endbibitem
- {barticle}[author] \bauthor\bsnmAnscombe, \bfnmFrancis J.\binitsF. J. (\byear1954). \btitleFixed-sample size analysis of sequential observations. \bjournalBiometrics \bvolume10 \bpages89–100. \endbibitem
- {barticle}[author] \bauthor\bsnmBarnard, \bfnmGeorge A.\binitsG. A. (\byear1947). \btitleReview of Abraham Wald’s Sequential Analysis. \bjournalJournal of the American Statistical Association \bvolume42 \bpages658–665. \endbibitem
- {barticle}[author] \bauthor\bsnmBarron, \bfnmA.\binitsA., \bauthor\bsnmRissanen, \bfnmJ.\binitsJ. and \bauthor\bsnmYu, \bfnmB.\binitsB. (\byear1998). \btitleThe Minimum Description Length principle in coding and modeling. \bjournalIEEE transactions on information theory \bvolume44 \bpages2743-2760. \bnoteSpecial Commemorative Issue: Information Theory: 1948-1998. \endbibitem
- {barticle}[author] \bauthor\bsnmBenjamini, \bfnmYoav\binitsY. and \bauthor\bsnmHochberg, \bfnmYosef\binitsY. (\byear1995). \btitleControlling the false discovery rate: a practical and powerful approach to multiple testing. \bjournalJournal of the Royal Statistical Society: Series B \bvolume57 \bpages289–300. \endbibitem
- {barticle}[author] \bauthor\bsnmBenjamini, \bfnmYoav\binitsY. and \bauthor\bsnmYekutieli, \bfnmDaniel\binitsD. (\byear2001). \btitleThe control of the false discovery rate in multiple testing under dependency. \bjournalAnnals of Statistics \bpages1165–1188. \endbibitem
- {barticle}[author] \bauthor\bsnmBenjamini, \bfnmYoav\binitsY. and \bauthor\bsnmYekutieli, \bfnmDaniel\binitsD. (\byear2005). \btitleFalse discovery rate–adjusted multiple confidence intervals for selected parameters. \bjournalJournal of the American Statistical Association \bvolume100 \bpages71–81. \endbibitem
- {barticle}[author] \bauthor\bsnmBreiman, \bfnmLeo\binitsL. (\byear1961). \btitleOptimal gambling systems for favorable games. \bjournalFourth Berkeley Symposium. \endbibitem
- {bmisc}[author] \bauthor\bsnmCarney, \bfnmD. R.\binitsD. R. \btitleMy position on “Power Poses”. \bnoteAccessed 5 June 2022, Web link. \endbibitem
- {barticle}[author] \bauthor\bsnmCarney, \bfnmD. R.\binitsD. R., \bauthor\bsnmCuddy, \bfnmA. J. C.\binitsA. J. C. and \bauthor\bsnmYap, \bfnmA. J.\binitsA. J. (\byear2010). \btitlePower posing: Brief nonverbal displays cause changes in neuroendocrine levels and risk tolerance. \bjournalPsychological Science \bvolume21 \bpages1363–1368. \endbibitem
- {barticle}[author] \bauthor\bsnmCasgrain, \bfnmPhilippe\binitsP., \bauthor\bsnmLarsson, \bfnmMartin\binitsM. and \bauthor\bsnmZiegel, \bfnmJohanna\binitsJ. (\byear2022). \btitleAnytime-valid sequential testing for elicitable functionals via supermartingales. \bjournalarXiv:2204.05680. \endbibitem
- {binproceedings}[author] \bauthor\bsnmCatoni, \bfnmOlivier\binitsO. (\byear2012). \btitleChallenging the empirical mean and empirical variance: a deviation study. In \bbooktitleAnnales de l’IHP Probabilités et statistiques \bvolume48 \bpages1148–1185. \endbibitem
- {barticle}[author] \bauthor\bsnmChoe, \bfnmYo Joong\binitsY. J. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2021). \btitleComparing Sequential Forecasters. \bjournalarXiv:2110.00115. \endbibitem
- {binproceedings}[author] \bauthor\bsnmChowdhury, \bfnmSayak Ray\binitsS. R. and \bauthor\bsnmGopalan, \bfnmAditya\binitsA. (\byear2017). \btitleOn kernelized multi-armed bandits. In \bbooktitleInternational Conference on Machine Learning \bpages844–853. \bpublisherPMLR. \endbibitem
- {barticle}[author] \bauthor\bsnmCover, \bfnmThomas M\binitsT. M. (\byear1974). \btitleUniversal gambling schemes and the complexity measures of Kolmogorov and Chaitin. \bjournalTechnical Report, no. 12. \endbibitem
- {barticle}[author] \bauthor\bsnmCox, \bfnmD. R.\binitsD. R. (\byear1952). \btitleSequential tests for composite hypotheses. \bjournalMathematical Proceedings of the Cambridge Philosophical Society \bvolume48 \bpages290–299. \endbibitem
- {bmisc}[author] \bauthor\bsnmCrane, \bfnmHarry\binitsH. and \bauthor\bsnmShafer, \bfnmGlenn\binitsG. (\byear2020). \btitleRisk is random: The magic of the d’Alembert. \bnoteWorking Paper #57 at www.probabilityandfinance.com. \endbibitem
- {barticle}[author] \bauthor\bsnmDarling, \bfnmDA\binitsD. and \bauthor\bsnmRobbins, \bfnmHerbert\binitsH. (\byear1968). \btitleSome nonparametric sequential tests with power one. \bjournalProceedings of the National Academy of Sciences \bvolume61 \bpages804–809. \endbibitem
- {barticle}[author] \bauthor\bsnmDe Heide, \bfnmRianne\binitsR. and \bauthor\bsnmGrünwald, \bfnmPeter D\binitsP. D. (\byear2021). \btitleWhy optional stopping can be a problem for Bayesians. \bjournalPsychonomic Bulletin & Review \bvolume28 \bpages795–812. \endbibitem
- {barticle}[author] \bauthor\bparticlede la \bsnmPeña, \bfnmVictor H.\binitsV. H. (\byear1999). \btitleA general class of exponential inequalities for martingales and ratios. \bjournalAnnals of Probability \bvolume27 \bpages537–564. \endbibitem
- {barticle}[author] \bauthor\bsnmDelyon, \bfnmBernard\binitsB. (\byear2009). \btitleExponential inequalities for sums of weakly dependent variables. \bjournalElectronic Journal of Probability \bvolume14 \bpages752–779. \endbibitem
- {bmisc}[author] \bauthor\bsnmDimitrov, \bfnmValentin\binitsV., \bauthor\bsnmShafer, \bfnmGlenn\binitsG. and \bauthor\bsnmZhang, \bfnmTiangang\binitsT. (\byear2022). \btitleThe martingale index. \bnoteWorking Paper #61 at www.probabilityandfinance.com. \endbibitem
- {binproceedings}[author] \bauthor\bsnmDuan, \bfnmBoyan\binitsB., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmWasserman, \bfnmLarry\binitsL. (\byear2022). \btitleInteractive rank testing by betting. In \bbooktitleFirst conference on Causal Learning and Reasoning. \bpublisherPMLR. \endbibitem
- {barticle}[author] \bauthor\bsnmDubins, \bfnmLester E\binitsL. E. and \bauthor\bsnmSavage, \bfnmLeonard J\binitsL. J. (\byear1965). \btitleA Tchebycheff-like inequality for stochastic processes. \bjournalProceedings of the National Academy of Sciences \bvolume53 \bpages274–275. \endbibitem
- {bbook}[author] \bauthor\bsnmEdwards, \bfnmA. W. F.\binitsA. W. F. (\byear1992). \btitleLikelihood. \bpublisherJohns Hopkins University Press. \endbibitem
- {barticle}[author] \bauthor\bsnmEfron, \bfnmBradley\binitsB. (\byear1969). \btitleStudent’s t-test under symmetry conditions. \bjournalJournal of the American Statistical Association \bvolume64 \bpages1278–1302. \endbibitem
- {barticle}[author] \bauthor\bsnmFan, \bfnmXiequan\binitsX., \bauthor\bsnmGrama, \bfnmIon\binitsI. and \bauthor\bsnmLiu, \bfnmQuansheng\binitsQ. (\byear2015). \btitleExponential inequalities for martingales with applications. \bjournalElectronic Journal of Probability \bvolume20 \bpages1–22. \endbibitem
- {barticle}[author] \bauthor\bsnmFeller, \bfnmWilly K.\binitsW. K. (\byear1940). \btitleStatistical aspects of ESP. \bjournalThe Journal of Parapsychology \bvolume4 \bpages271–298. \endbibitem
- {barticle}[author] \bauthor\bsnmGangrade, \bfnmAditya\binitsA., \bauthor\bsnmRinaldo, \bfnmAlessandro\binitsA. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023). \btitleA Sequential Test for Log-Concavity. \bjournalarXiv preprint arXiv:2301.03542. \endbibitem
- {barticle}[author] \bauthor\bsnmGrünwald, \bfnmPeter\binitsP. (\byear2022). \btitleBeyond Neyman-Pearson. \bjournalarXiv:2205.00901. \endbibitem
- {barticle}[author] \bauthor\bsnmGrünwald, \bfnmPeter\binitsP. (\byear2023). \btitleThe E-Posterior. \bjournalPhilosophical Transactions of the Royal Society, Series A. \bdoi10.1098/rsta.2022.146 \endbibitem
- {barticle}[author] \bauthor\bsnmGrünwald, \bfnmP.\binitsP. and \bauthor\bsnmRoos, \bfnmT.\binitsT. (\byear2020). \btitleMinimum Description Length Revisited. \bjournalInternational Journal of Mathematics for Industry \bvolume11. \endbibitem
- {barticle}[author] \bauthor\bsnmGrünwald, \bfnmPeter\binitsP., \bauthor\bsnmHenzi, \bfnmAlexander\binitsA. and \bauthor\bsnmLardy, \bfnmTyron\binitsT. (\byear2023). \btitleAnytime-Valid Tests of Conditional Independence Under Model-X. \bjournalJournal of the American Statistical Association \bvolume0 \bpages1-12. \endbibitem
- {barticle}[author] \bauthor\bsnmHendriks, \bfnmHarrie\binitsH. (\byear2018). \btitleTest Martingales for bounded random variables. \bjournalarXiv:1801.09418. \endbibitem
- {barticle}[author] \bauthor\bsnmHenzi, \bfnmAlexander\binitsA., \bauthor\bsnmArnold, \bfnmSebastian\binitsS. and \bauthor\bsnmZiegel, \bfnmJohanna F\binitsJ. F. (\byear2023). \btitleSequentially valid tests for forecast calibration. \bjournalAnnals of Applied Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmHenzi, \bfnmAlexander\binitsA. and \bauthor\bsnmZiegel, \bfnmJohanna F.\binitsJ. F. (\byear2022). \btitleValid sequential inference on probability forecast performance. \bjournalBiometrika. \endbibitem
- {barticle}[author] \bauthor\bsnmHildreth, \bfnmClifford\binitsC. (\byear1963). \btitleBayesian statisticians and remote clients. \bjournalEconometrica: Journal of the Econometric Society \bpages422–438. \endbibitem
- {barticle}[author] \bauthor\bsnmHoward, \bfnmSteven R\binitsS. R. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleSequential estimation of quantiles with applications to A/B testing and best-arm identification. \bjournalBernoulli \bvolume28 \bpages1704–1728. \endbibitem
- {barticle}[author] \bauthor\bsnmIgnatiadis, \bfnmNikolaos\binitsN., \bauthor\bsnmWang, \bfnmRuodu\binitsR. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleE-values as unnormalized weights in multiple testing. \bjournalarXiv:2204.12447. \endbibitem
- {barticle}[author] \bauthor\bsnmJohn, \bfnmLeslie K\binitsL. K., \bauthor\bsnmLoewenstein, \bfnmGeorge\binitsG. and \bauthor\bsnmPrelec, \bfnmDrazen\binitsD. (\byear2012). \btitleMeasuring the prevalence of questionable research practices with incentives for truth telling. \bjournalPsychological science \bvolume23 \bpages524–532. \endbibitem
- {binproceedings}[author] \bauthor\bsnmKarampatziakis, \bfnmNikos\binitsN., \bauthor\bsnmMineiro, \bfnmPaul\binitsP. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2021). \btitleOff-policy confidence sequences. In \bbooktitleInternational Conference on Machine Learning \bpages5301–5310. \bpublisherPMLR. \endbibitem
- {barticle}[author] \bauthor\bsnmKaufmann, \bfnmEmilie\binitsE. and \bauthor\bsnmKoolen, \bfnmWouter M\binitsW. M. (\byear2021). \btitleMixture Martingales Revisited with Applications to Sequential Tests and Confidence Intervals. \bjournalJ. Mach. Learn. Res. \bvolume22 \bpages246–1. \endbibitem
- {barticle}[author] \bauthor\bsnmKelly, \bfnmJ. L.\binitsJ. L. (\byear1956). \btitleA New Interpretation of Information Rate. \bjournalBell System Technical Journal \bpages917–926. \endbibitem
- {barticle}[author] \bauthor\bsnmLai, \bfnmTze Leung\binitsT. L. (\byear1976). \btitleOn confidence sequences. \bjournalAnn. Statist. \bvolume4 \bpages265–280. \endbibitem
- {barticle}[author] \bauthor\bsnmLhéritier, \bfnmAlix\binitsA. and \bauthor\bsnmCazals, \bfnmFrédéric\binitsF. (\byear2018). \btitleA sequential non-parametric multivariate two-sample test. \bjournalIEEE Transactions on Information Theory \bvolume64 \bpages3361–3370. \endbibitem
- {binproceedings}[author] \bauthor\bsnmLi, \bfnmJ. Q.\binitsJ. Q. and \bauthor\bsnmBarron, \bfnmA. R.\binitsA. R. (\byear2000). \btitleMixture Density Estimation. In \bbooktitleAdvances in Neural Information Processing Systems \bvolume12 \bpages279–285. \endbibitem
- {barticle}[author] \bauthor\bsnmMaclean, \bfnmLeonard C.\binitsL. C., \bauthor\bsnmThorp, \bfnmEdward O.\binitsE. O. and \bauthor\bsnmZiemba, \bfnmWilliam T.\binitsW. T. (\byear2010). \btitleLong-term capital growth: the good and bad properties of the Kelly and fractional Kelly capital growth criteria. \bjournalQuantitative Finance \bvolume10 \bpages681-687. \endbibitem
- {barticle}[author] \bauthor\bsnmManole, \bfnmTudor\binitsT. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023). \btitleSequential estimation of convex divergences using reverse submartingales and exchangeable filtrations. \bjournalIEEE Transactions on Information Theory. \endbibitem
- {barticle}[author] \bauthor\bsnmMingxiu, \bfnmHu\binitsH., \bauthor\bsnmCappelleri, \bfnmJoseph C.\binitsJ. C. and \bauthor\bsnmGordon Lan, \bfnmK. K.\binitsK. K. (\byear2007). \btitleApplying the law of iterated logarithm to control type I error in cumulative meta-analysis of binary outcomes. \bjournalClinical Trials. \endbibitem
- {binproceedings}[author] \bauthor\bsnmNeiswanger, \bfnmWillie\binitsW. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2021). \btitleUncertainty quantification using martingales for misspecified Gaussian processes. In \bbooktitleAlgorithmic Learning Theory \bpages963–982. \bpublisherPMLR. \endbibitem
- {barticle}[author] \bauthor\bsnmOrabona, \bfnmFrancesco\binitsF. and \bauthor\bsnmJun, \bfnmKwang-Sung\binitsK.-S. (\byear2021). \btitleTight concentrations and confidence sequences from the regret of universal portfolio. \bjournalarXiv:2110.14099. \endbibitem
- {barticle}[author] \bauthor\bsnmPace, \bfnmLuigi\binitsL. and \bauthor\bsnmSalvan, \bfnmAlessandra\binitsA. (\byear2020). \btitleLikelihood, Replicability and Robbins’ Confidence Sequences. \bjournalInternational Statistical Review \bvolume88 \bpages599–615. \endbibitem
- {barticle}[author] \bauthor\bsnmPawel, \bfnmSamuel\binitsS., \bauthor\bsnmLy, \bfnmAlexander\binitsA. and \bauthor\bsnmWagenmakers, \bfnmEric-Jan\binitsE.-J. (\byear2022). \btitleEvidential Calibration of Confidence Intervals. \bjournalarXiv:2206.12290. \endbibitem
- {barticle}[author] \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmManole, \bfnmTudor\binitsT. (\byear2023). \btitleRandomized and Exchangeable Improvements of Markov’s, Chebyshev’s and Chernoff’s Inequalities. \bjournalarXiv preprint arXiv:2304.02611. \endbibitem
- {barticle}[author] \bauthor\bsnmRobbins, \bfnmHerbert\binitsH. (\byear1952). \btitleSome aspects of the sequential design of experiments. \bjournalBulletin of the American Mathematical Society \bvolume58 \bpages527–535. \endbibitem
- {barticle}[author] \bauthor\bsnmRobbins, \bfnmHerbert\binitsH. (\byear1970). \btitleStatistical methods related to the law of the iterated logarithm. \bjournalThe Annals of Mathematical Statistics \bvolume41 \bpages1397–1409. \endbibitem
- {barticle}[author] \bauthor\bsnmRobbins, \bfnmHerbert\binitsH. and \bauthor\bsnmSiegmund, \bfnmDavid\binitsD. (\byear1974). \btitleThe expected sample size of some tests of power one. \bjournalThe Annals of Statistics \bvolume2 \bpages415–436. \endbibitem
- {bbook}[author] \bauthor\bsnmRoyall, \bfnmRichard\binitsR. (\byear1997). \btitleStatistical evidence: a likelihood paradigm. \bpublisherChapman and Hall. \endbibitem
- {barticle}[author] \bauthor\bsnmRushton, \bfnmS.\binitsS. (\byear1950). \btitleOn a Sequential t-test. \bjournalbiometrika \bvolume37 \bpages326–333. \endbibitem
- {binproceedings}[author] \bauthor\bsnmShaer, \bfnmShalev\binitsS., \bauthor\bsnmMaman, \bfnmGal\binitsG. and \bauthor\bsnmRomano, \bfnmYaniv\binitsY. (\byear2023). \btitleModel-Free Sequential Testing for Conditional Independence via Testing by Betting. In \bbooktitleInternational Conference on Artificial Intelligence and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmShafer, \bfnmGlenn\binitsG. (\byear2021). \btitleTesting by betting: a strategy for statistical and scientific communication (with discussion and response). \bjournalJournal of the Royal Statistic Society A \bvolume184 \bpages407–478. \endbibitem
- {bbook}[author] \bauthor\bsnmShafer, \bfnmGlenn\binitsG. and \bauthor\bsnmVovk, \bfnmVladimir\binitsV. (\byear2001). \btitleProbability and Finance: It’s Only a Game. \bpublisherWiley, \baddressNew York. \endbibitem
- {barticle}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2021). \btitleNonparametric two sample testing by betting. \bjournalarXiv:2112.09162. \endbibitem
- {binproceedings}[author] \bauthor\bsnmShekhar, \bfnmShubhanshu\binitsS. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023). \btitleSequential change detection via backward confidence sequences. In \bbooktitleInternational Conference on Machine Learning. \endbibitem
- {barticle}[author] \bauthor\bsnmShin, \bfnmJaehyeok\binitsJ., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmRinaldo, \bfnmAlessandro\binitsA. (\byear2022). \btitleE-detectors: a nonparametric framework for online changepoint detection. \bjournalarXiv:2203.03532. \endbibitem
- {binproceedings}[author] \bauthor\bsnmSpertus, \bfnmJacob V\binitsJ. V. and \bauthor\bsnmStark, \bfnmPhillip B\binitsP. B. (\byear2022). \btitleSweeter than SUITE: Supermartingale Stratified Union-Intersection Tests of Elections. In \bbooktitleInternational Joint Conference on Electronic Voting. \endbibitem
- {barticle}[author] \bauthor\bsnmTer Schure, \bfnmJ.\binitsJ. and \bauthor\bsnmGrünwald, \bfnmP.\binitsP. (\byear2022). \btitleALL-IN meta-analysis: breathing life into living systematic reviews. \bjournalF1000Research \bvolume11. \endbibitem
- {barticle}[author] \bauthor\bsnmTer Schure, \bfnmJudith\binitsJ., \bauthor\bsnmGrünwald, \bfnmPeter\binitsP. and \bauthor\bsnmLy, \bfnmAlexander\binitsA. (\byear2021). \btitlePandemic preparedness in data sharing; lessons learned from collaborating in a live meta-analysis. \bjournalStatOR \bvolume24 \bpages47–52. \endbibitem
- {bmisc}[author] \bauthor\bsnmTuring, \bfnmAlan M.\binitsA. M. (\byearc 1941). \btitleThe Applications of Probability to Cryptography. \bnoteUK National Archives, HW 25/37. See arXiv:1505.04714 for a version set in Latex. \endbibitem
- {barticle}[author] \bauthor\bsnmTurner, \bfnmRosanne\binitsR. and \bauthor\bsnmGrünwald, \bfnmPeter\binitsP. (\byear2023a). \btitleAnytime-valid Confidence Intervals for Contingency Tables and Beyond. \bjournalStatistics and Probability Letters. \endbibitem
- {binproceedings}[author] \bauthor\bsnmTurner, \bfnmRosanne\binitsR. and \bauthor\bsnmGrünwald, \bfnmPeter\binitsP. (\byear2023b). \btitleSafe Sequential Testing and Effect Estimation in Stratified Count Data. In \bbooktitleAnnual AI and Statistics Conference. \endbibitem
- {barticle}[author] \bauthor\bsnmTurner, \bfnmRosanne\binitsR., \bauthor\bsnmLy, \bfnmAlexander\binitsA. and \bauthor\bsnmGrünwald, \bfnmPeter\binitsP. (\byear2021). \btitleGeneric E-Variables for Exact Sequential k-Sample Tests that allow for Optional Stopping. \bjournalarXiv:2106.02693. \endbibitem
- {bbook}[author] \bauthor\bsnmVille, \bfnmJean\binitsJ. (\byear1939). \btitleEtude critique de la notion de collectif. \bpublisherGauthier-Villars. \endbibitem
- {barticle}[author] \bauthor\bsnmVovk, \bfnmVladimir\binitsV. (\byear2021). \btitleTesting randomness online. \bjournalStatistical Science \bvolume36 \bpages595–611. \endbibitem
- {barticle}[author] \bauthor\bsnmVovk, \bfnmVladimir\binitsV., \bauthor\bsnmNouretdinov, \bfnmIlia\binitsI. and \bauthor\bsnmGammerman, \bfnmAlex\binitsA. (\byear2021). \btitleConformal testing: binary case with Markov alternatives. \bjournalarXiv:2111.01885. \endbibitem
- {barticle}[author] \bauthor\bsnmWald, \bfnmAbraham\binitsA. (\byear1945). \btitleSequential Tests of Statistical Hypotheses. \bjournalAnn. Math. Statist. \bvolume16 \bpages117-186. \endbibitem
- {bbook}[author] \bauthor\bsnmWald, \bfnmAbraham\binitsA. (\byear1947a). \btitleSequential Analysis. \bpublisherWiley, \baddressNew York. \endbibitem
- {bbook}[author] \bauthor\bsnmWald, \bfnmAbraham\binitsA. (\byear1947b). \btitleSequential Analysis. \bpublisherWiley, \baddressNew York. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmRuodu\binitsR. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitleFalse discovery rate control with e-values. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology). \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmHongjian\binitsH. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023a). \btitleThe extended Ville’s inequality for nonintegrable nonnegative supermartingales. \bjournalarXiv preprint arXiv:2304.01163. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmHongjian\binitsH. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023b). \btitleCatoni-style confidence sequences for heavy-tailed mean estimation. \bjournalStochastic Processes and Applications. \endbibitem
- {barticle}[author] \bauthor\bsnmWang, \bfnmHongjian\binitsH. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023c). \btitleHuber-robust confidence sequences. \bjournal26th International Conference on Artificial Intelligence and Statistics. \endbibitem
- {barticle}[author] \bauthor\bsnmWasserman, \bfnmLarry\binitsL., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmBalakrishnan, \bfnmSivaraman\binitsS. (\byear2020). \btitleUniversal inference. \bjournalProceedings of the National Academy of Sciences \bvolume117 \bpages16880–16890. \endbibitem
- {barticle}[author] \bauthor\bsnmWaudby-Smith, \bfnmIan\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2020). \btitleConfidence sequences for sampling without replacement. \bjournalAdvances in Neural Information Processing Systems \bvolume33 \bpages20204–20214. \endbibitem
- {barticle}[author] \bauthor\bsnmWaudby-Smith, \bfnmIan\binitsI. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2023). \btitleEstimating means of bounded random variables by betting. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology). \bnote(to appear with discussion). \endbibitem
- {binproceedings}[author] \bauthor\bsnmWaudby-Smith, \bfnmIan\binitsI., \bauthor\bsnmStark, \bfnmPhilip B\binitsP. B. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2021). \btitleRiLACS: Risk limiting audits via confidence sequences. In \bbooktitleInternational Joint Conference on Electronic Voting \bpages124–139. \bpublisherSpringer. \endbibitem
- {barticle}[author] \bauthor\bsnmXu, \bfnmZiyu\binitsZ., \bauthor\bsnmWang, \bfnmRuodu\binitsR. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2021). \btitleA unified framework for bandit multiple testing. \bjournalAdvances in Neural Information Processing Systems \bvolume34. \endbibitem
- {barticle}[author] \bauthor\bsnmXu, \bfnmZiyu\binitsZ., \bauthor\bsnmWang, \bfnmRuodu\binitsR. and \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. (\byear2022). \btitlePost-selection inference for e-value based confidence intervals. \bjournalarXiv:2203.12572. \endbibitem
- {barticle}[author] \bauthor\bsnmZhang, \bfnmZhenyuan\binitsZ., \bauthor\bsnmRamdas, \bfnmAaditya\binitsA. and \bauthor\bsnmWang, \bfnmRuodu\binitsR. (\byear2023). \btitleWhen do exact and powerful p-values and e-values exist? \bjournalarXiv preprint arXiv:2305.16539. \endbibitem