Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Signal Temporal Logic through Neural Network for Interpretable Classification (2210.01910v2)

Published 4 Oct 2022 in cs.FL and cs.LG

Abstract: Machine learning techniques using neural networks have achieved promising success for time-series data classification. However, the models that they produce are challenging to verify and interpret. In this paper, we propose an explainable neural-symbolic framework for the classification of time-series behaviors. In particular, we use an expressive formal language, namely Signal Temporal Logic (STL), to constrain the search of the computation graph for a neural network. We design a novel time function and sparse softmax function to improve the soundness and precision of the neural-STL framework. As a result, we can efficiently learn a compact STL formula for the classification of time-series data through off-the-shelf gradient-based tools. We demonstrate the computational efficiency, compactness, and interpretability of the proposed method through driving scenarios and naval surveillance case studies, compared with state-of-the-art baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, M. Adam, A. Gertych, and R. San Tan, “A deep convolutional neural network model to classify heartbeats,” Computers in biology and medicine, vol. 89, pp. 389–396, 2017.
  2. D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent neural network for sentiment classification,” in Proceedings of the 2015 conference on empirical methods in natural language processing, 2015, pp. 1422–1432.
  3. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems.   Springer, 2004, pp. 152–166.
  4. V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in 53rd IEEE Conference on Decision and Control.   IEEE, 2014, pp. 81–87.
  5. M. Ma, J. Gao, L. Feng, and J. Stankovic, “Stlnet: Signal temporal logic enforced multivariate recurrent neural networks,” Advances in Neural Information Processing Systems, vol. 33, pp. 14 604–14 614, 2020.
  6. X. Jin, A. Donzé, J. V. Deshmukh, and S. A. Seshia, “Mining requirements from closed-loop control models,” in Proceedings of the 16th international conference on Hybrid systems: computation and control, 2013, pp. 43–52.
  7. A. Bakhirkin, T. Ferrère, and O. Maler, “Efficient parametric identification for stl,” in Proceedings of the 21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week), 2018, pp. 177–186.
  8. B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric temporal logic properties in model-based design for cyber-physical systems,” International Journal on Software Tools for Technology Transfer, vol. 20, no. 1, pp. 79–93, 2018.
  9. Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and detection of anomalous behavior,” IEEE Transactions on Automatic Control, vol. 62, no. 3, pp. 1210–1222, 2016.
  10. G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A decision tree approach to data classification using signal temporal logic,” in Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, 2016, pp. 1–10.
  11. S. Mohammadinejad, J. V. Deshmukh, A. G. Puranic, M. Vazquez-Chanlatte, and A. Donzé, “Interpretable classification of time-series data using efficient enumerative techniques,” in Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–10.
  12. E. Aasi, C. I. Vasile, M. Bahreinian, and C. Belta, “Classification of time-series data using boosted decision trees,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022, pp. 1263–1268.
  13. J.-R. Gaglione, D. Neider, R. Roy, U. Topcu, and Z. Xu, “Maxsat-based temporal logic inference from noisy data,” Innovations in Systems and Software Engineering, vol. 18, no. 3, pp. 427–442, 2022.
  14. T. Rocktäschel and S. Riedel, “End-to-end differentiable proving,” Advances in neural information processing systems, vol. 30, 2017.
  15. F. Yang, Z. Yang, and W. W. Cohen, “Differentiable learning of logical rules for knowledge base reasoning,” Advances in neural information processing systems, vol. 30, 2017.
  16. K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through signal temporal logic specifications: Infusing logical structure into gradient-based methods,” in International Workshop on the Algorithmic Foundations of Robotics.   Springer, 2020, pp. 432–449.
  17. A. Ketenci and E. A. Gol, “Learning parameters of ptstl formulas with backpropagation,” in 2020 28th Signal Processing and Communications Applications Conference (SIU).   IEEE, 2020, pp. 1–4.
  18. R. Yan and A. Julius, “Neural network for weighted signal temporal logic,” arXiv preprint arXiv:2104.05435, 2021.
  19. N. Baharisangari, K. Hirota, R. Yan, A. Julius, and Z. Xu, “Weighted graph-based signal temporal logic inference using neural networks,” IEEE Control Systems Letters, vol. 6, pp. 2096–2101, 2021.
  20. G. Chen, Y. Lu, R. Su, and Z. Kong, “Interpretable fault diagnosis of rolling element bearings with temporal logic neural network,” arXiv preprint arXiv:2204.07579, 2022.
  21. N. Mehdipour, C.-I. Vasile, and C. Belta, “Arithmetic-geometric mean robustness for control from signal temporal logic specifications,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 1690–1695.
  22. ——, “Specifying user preferences using weighted signal temporal logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2021.
  23. S. Srinivas, A. Subramanya, and R. Venkatesh Babu, “Training sparse neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 138–145.
  24. Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.
Citations (10)

Summary

We haven't generated a summary for this paper yet.