Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty-Aware Meta-Learning for Multimodal Task Distributions (2210.01881v1)

Published 4 Oct 2022 in cs.LG and cs.AI

Abstract: Meta-learning or learning to learn is a popular approach for learning new tasks with limited data (i.e., few-shot learning) by leveraging the commonalities among different tasks. However, meta-learned models can perform poorly when context data is limited, or when data is drawn from an out-of-distribution (OoD) task. Especially in safety-critical settings, this necessitates an uncertainty-aware approach to meta-learning. In addition, the often multimodal nature of task distributions can pose unique challenges to meta-learning methods. In this work, we present UnLiMiTD (uncertainty-aware meta-learning for multimodal task distributions), a novel method for meta-learning that (1) makes probabilistic predictions on in-distribution tasks efficiently, (2) is capable of detecting OoD context data at test time, and (3) performs on heterogeneous, multimodal task distributions. To achieve this goal, we take a probabilistic perspective and train a parametric, tuneable distribution over tasks on the meta-dataset. We construct this distribution by performing Bayesian inference on a linearized neural network, leveraging Gaussian process theory. We demonstrate that UnLiMiTD's predictions compare favorably to, and outperform in most cases, the standard baselines, especially in the low-data regime. Furthermore, we show that UnLiMiTD is effective in detecting data from OoD tasks. Finally, we confirm that both of these findings continue to hold in the multimodal task-distribution setting.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Cesar Almecija (1 paper)
  2. Apoorva Sharma (24 papers)
  3. Navid Azizan (36 papers)
Citations (2)