Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
36 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Memory in humans and deep language models: Linking hypotheses for model augmentation (2210.01869v3)

Published 4 Oct 2022 in cs.CL and cs.AI

Abstract: The computational complexity of the self-attention mechanism in Transformer models significantly limits their ability to generalize over long temporal durations. Memory-augmentation, or the explicit storing of past information in external memory for subsequent predictions, has become a constructive avenue for mitigating this limitation. We argue that memory-augmented Transformers can benefit substantially from considering insights from the memory literature in humans. We detail an approach for integrating evidence from the human memory system through the specification of cross-domain linking hypotheses. We then provide an empirical demonstration to evaluate the use of surprisal as a linking hypothesis, and further identify the limitations of this approach to inform future research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.