Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge Distillation based Contextual Relevance Matching for E-commerce Product Search (2210.01701v1)

Published 4 Oct 2022 in cs.IR

Abstract: Online relevance matching is an essential task of e-commerce product search to boost the utility of search engines and ensure a smooth user experience. Previous work adopts either classical relevance matching models or Transformer-style models to address it. However, they ignore the inherent bipartite graph structures that are ubiquitous in e-commerce product search logs and are too inefficient to deploy online. In this paper, we design an efficient knowledge distillation framework for e-commerce relevance matching to integrate the respective advantages of Transformer-style models and classical relevance matching models. Especially for the core student model of the framework, we propose a novel method using $k$-order relevance modeling. The experimental results on large-scale real-world data (the size is 6$\sim$174 million) show that the proposed method significantly improves the prediction accuracy in terms of human relevance judgment. We deploy our method to the anonymous online search platform. The A/B testing results show that our method significantly improves 5.7% of UV-value under price sort mode.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Ziyang Liu (26 papers)
  2. Chaokun Wang (11 papers)
  3. Hao Feng (83 papers)
  4. Lingfei Wu (135 papers)
  5. Liqun Yang (18 papers)
Citations (3)