Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DGORL: Distributed Graph Optimization based Relative Localization of Multi-Robot Systems (2210.01662v1)

Published 4 Oct 2022 in cs.RO and cs.MA

Abstract: An optimization problem is at the heart of many robotics estimating, planning, and optimum control problems. Several attempts have been made at model-based multi-robot localization, and few have formulated the multi-robot collaborative localization problem as a factor graph problem to solve through graph optimization. Here, the optimization objective is to minimize the errors of estimating the relative location estimates in a distributed manner. Our novel graph-theoretic approach to solving this problem consists of three major components; (connectivity) graph formation, expansion through transition model, and optimization of relative poses. First, we estimate the relative pose-connectivity graph using the received signal strength between the connected robots, indicating relative ranges between them. Then, we apply a motion model to formulate graph expansion and optimize them using g$2$o graph optimization as a distributed solver over dynamic networks. Finally, we theoretically analyze the algorithm and numerically validate its optimality and performance through extensive simulations. The results demonstrate the practicality of the proposed solution compared to a state-of-the-art algorithm for collaborative localization in multi-robot systems.

Citations (9)

Summary

We haven't generated a summary for this paper yet.