Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
86 tokens/sec
Gemini 2.5 Pro Premium
43 tokens/sec
GPT-5 Medium
19 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
93 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
441 tokens/sec
Kimi K2 via Groq Premium
234 tokens/sec
2000 character limit reached

Distance Based Image Classification: A solution to generative classification's conundrum? (2210.01349v1)

Published 4 Oct 2022 in cs.CV and cs.AI

Abstract: Most classifiers rely on discriminative boundaries that separate instances of each class from everything else. We argue that discriminative boundaries are counter-intuitive as they define semantics by what-they-are-not; and should be replaced by generative classifiers which define semantics by what-they-are. Unfortunately, generative classifiers are significantly less accurate. This may be caused by the tendency of generative models to focus on easy to model semantic generative factors and ignore non-semantic factors that are important but difficult to model. We propose a new generative model in which semantic factors are accommodated by shell theory's hierarchical generative process and non-semantic factors by an instance specific noise term. We use the model to develop a classification scheme which suppresses the impact of noise while preserving semantic cues. The result is a surprisingly accurate generative classifier, that takes the form of a modified nearest-neighbor algorithm; we term it distance classification. Unlike discriminative classifiers, a distance classifier: defines semantics by what-they-are; is amenable to incremental updates; and scales well with the number of classes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.