2000 character limit reached
A recognition principle for iterated suspensions as coalgebras over the little cubes operad (2210.00839v2)
Published 3 Oct 2022 in math.AT
Abstract: Our main result is a recognition principle for iterated suspensions as coalgebras over the little disks operads. Given a topological operad, we construct a comonad in pointed topological spaces endowed with the wedge product. We then prove an approximation theorem that shows that the comonad associated to the little $n$-cubes operad is weakly equivalent to the comonad $\Sigman \Omegan$ arising from the suspension-loop space adjunction. Finally, our recognition theorem states that every little $n$-cubes coalgebra is homotopy equivalent to an $n$-fold suspension. These results are the Eckmann--Hilton dual of May's foundational results on iterated loop spaces.