Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Dynamic of Consensus in Deep Networks and the Identification of Noisy Labels (2210.00583v1)

Published 2 Oct 2022 in cs.LG and cs.AI

Abstract: Deep neural networks have incredible capacity and expressibility, and can seemingly memorize any training set. This introduces a problem when training in the presence of noisy labels, as the noisy examples cannot be distinguished from clean examples by the end of training. Recent research has dealt with this challenge by utilizing the fact that deep networks seem to memorize clean examples much earlier than noisy examples. Here we report a new empirical result: for each example, when looking at the time it has been memorized by each model in an ensemble of networks, the diversity seen in noisy examples is much larger than the clean examples. We use this observation to develop a new method for noisy labels filtration. The method is based on a statistics of the data, which captures the differences in ensemble learning dynamics between clean and noisy data. We test our method on three tasks: (i) noise amount estimation; (ii) noise filtration; (iii) supervised classification. We show that our method improves over existing baselines in all three tasks using a variety of datasets, noise models, and noise levels. Aside from its improved performance, our method has two other advantages. (i) Simplicity, which implies that no additional hyperparameters are introduced. (ii) Our method is modular: it does not work in an end-to-end fashion, and can therefore be used to clean a dataset for any other future usage.

Citations (1)

Summary

We haven't generated a summary for this paper yet.