Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Robustness with Adaptive Weight Decay (2210.00094v2)

Published 30 Sep 2022 in cs.LG and cs.CV

Abstract: We propose adaptive weight decay, which automatically tunes the hyper-parameter for weight decay during each training iteration. For classification problems, we propose changing the value of the weight decay hyper-parameter on the fly based on the strength of updates from the classification loss (i.e., gradient of cross-entropy), and the regularization loss (i.e., $\ell_2$-norm of the weights). We show that this simple modification can result in large improvements in adversarial robustness -- an area which suffers from robust overfitting -- without requiring extra data across various datasets and architecture choices. For example, our reformulation results in $20\%$ relative robustness improvement for CIFAR-100, and $10\%$ relative robustness improvement on CIFAR-10 comparing to the best tuned hyper-parameters of traditional weight decay resulting in models that have comparable performance to SOTA robustness methods. In addition, this method has other desirable properties, such as less sensitivity to learning rate, and smaller weight norms, which the latter contributes to robustness to overfitting to label noise, and pruning.

Citations (3)

Summary

We haven't generated a summary for this paper yet.