Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Indecomposable pure-injective objects in stable categories of Gorenstein-projective modules over Gorenstein orders (2209.15630v1)

Published 30 Sep 2022 in math.AC, math.CT, math.RA, and math.RT

Abstract: We give a result of Auslander-Ringel-Tachikawa type for Gorenstein-projective modules over a complete Gorenstein order. In particular, we prove that a complete Gorenstein order is of finite Cohen-Macaulay representation type if and only if every indecomposable pure-injective object in the stable category of Gorenstein-projective modules is compact.

Summary

We haven't generated a summary for this paper yet.