Catalysis in Action via Elementary Thermal Operations (2209.15213v2)
Abstract: We investigate catalysis in the framework of elementary thermal operations, leveraging the distinct features of such operations to illuminate catalytic dynamics. As groundwork, we establish new technical tools that enhance the computability of state transition rules for elementary thermal operations. Specifically, we provide a complete characterisation of state transitions for a qutrit system and special classes of initial states of arbitrary dimension. By employing these tools in conjunction with numerical methods, we find that by adopting a small catalyst, including just a qubit catalyst, one can significantly enlarge the set of state transitions for a qutrit system. This advancement notably narrows the gap of reachable states between elementary thermal operations and generic thermal operations. Furthermore, we decompose catalytic transitions into time-resolved evolution, which critically enables the tracking of nonequilibrium free energy exchanges between the system and bath. Our results provide evidence for the existence of simple and practicable catalytic advantage in thermodynamics while offering insight into analysing the mechanism of catalytic processes.
- “Entanglement-assisted local manipulation of pure quantum states”. Phys. Rev. Lett. 83, 3566–3569 (1999).
- “Catalysis of entanglement manipulation for mixed states”. Phys. Rev. Lett. 85, 437–440 (2000).
- “Mathematical structure of entanglement catalysis”. Phys. Rev. A 64, 042314 (2001).
- Peter H Anspach. “Two-qubit catalysis in a four-state pure bipartite system” (2001). arXiv:quant-ph/0102067.
- Matthew Klimesh. “Inequalities that collectively completely characterize the catalytic majorization relation” (2007). arXiv:0709.3680.
- “Catalytic transformations of pure entangled states”. Phys. Rev. Lett. 127, 150503 (2021).
- “Catalysis of entanglement and other quantum resources” (2022). arXiv:2207.05694.
- “Catalysis in quantum information theory” (2023). arXiv:2306.00798.
- Johan Åberg. “Catalytic coherence”. Phys. Rev. Lett. 113, 150402 (2014).
- “Catalytic coherence transformations”. Phys. Rev. A 93, 042326 (2016).
- “Amplifying asymmetry with correlating catalysts”. Phys. Rev. A 103, 022403 (2021).
- “Correlation in catalysts enables arbitrary manipulation of quantum coherence”. Phys. Rev. Lett. 128, 240501 (2022).
- “Limits to catalysis in quantum thermodynamics”. New J. Phys. 17, 085004 (2015).
- “The second laws of quantum thermodynamics”. Proc. Natl. Acad. Sci. U.S.A. 112, 3275–3279 (2015).
- Markus P. Müller. “Correlating thermal machines and the second law at the nanoscale”. Phys. Rev. X 8, 041051 (2018).
- “By-passing fluctuation theorems”. Quantum 4, 231 (2020).
- “Catalytic transformations with finite-size environments: applications to cooling and thermometry”. Quantum 5, 547 (2021).
- “Quantum thermodynamics of correlated-catalytic state conversion at small scale”. Phys. Rev. Lett. 126, 150502 (2021).
- “Catalytic gaussian thermal operations”. J Phys. A: Math. Theor. 55, 325301 (2022).
- “Catalytic quantum randomness”. Phys. Rev. X 8, 041016 (2018).
- “Von neumann entropy from unitarity”. Phys. Rev. Lett. 122, 210402 (2019).
- “Randomness for quantum channels: Genericity of catalysis and quantum advantage of uniformness”. Phys. Rev. Res. 3, 013218 (2021).
- “Catalytic quantum randomness as a correlational resource”. Phys. Rev. Research 3, 043089 (2021).
- Henrik Wilming. “Entropy and reversible catalysis”. Phys. Rev. Lett. 127, 260402 (2021).
- “Catalytic quantum teleportation”. Phys. Rev. Lett. 127, 080502 (2021).
- “Smoothed generalized free energies for thermodynamics”. Phys. Rev. A 96, 062135 (2017).
- “Quantifying resources in general resource theory with catalysts”. Phys. Rev. Lett. 121, 190504 (2018).
- “Relative entropy and catalytic relative majorization”. Phys. Rev. Res. 2, 033455 (2020).
- “All states are universal catalysts in quantum thermodynamics”. Phys. Rev. X 11, 011061 (2021).
- “Statistics of entanglement transformation with hierarchies among catalysts”. Phys. Rev. A 106, 052402 (2022).
- “Thermodynamic cost of reliability and low temperatures: Tightening landauer’s principle and the second law”. Int. J. Th. Phys. 39, 2717–2753 (2000).
- “Resource theory of quantum states out of thermal equilibrium”. Phys. Rev. Lett. 111, 250404 (2013).
- “Fundamental limitations for quantum and nanoscale thermodynamics”. Nat. Commun. 4, 1–6 (2013).
- “The resource theory of informational nonequilibrium in thermodynamics”. Phys. Rep. 583, 1–58 (2015).
- Nelly Huei Ying Ng and Mischa Prebin Woods. “Resource theory of quantum thermodynamics: Thermal operations and second laws”. Pages 625–650. Springer International Publishing. Cham (2018).
- “A sufficient set of experimentally implementable thermal operations for small systems”. Phys. Rev. X 8, 041049 (2018).
- Nicole Yunger Halpern. “Toward physical realizations of thermodynamic resource theories”. Pages 135–166. Springer International Publishing. Cham (2017).
- “Elementary Thermal Operations”. Quantum 2, 52 (2018).
- Jayaseetha Rau. “Relaxation phenomena in spin and harmonic oscillator systems”. Phys. Rev. 129, 1880–1888 (1963).
- “Comparison of quantum and semiclassical radiation theories with application to the beam maser”. Proc. IEEE 51, 89–109 (1963).
- Vladimír Bužek. “Jaynes-cummings model with intensity-dependent coupling interacting with holstein-primakoff su(1,1) coherent state”. Phys. Rev. A 39, 3196–3199 (1989).
- Earl T Campbell. “Catalysis and activation of magic states in fault-tolerant architectures”. Phys. Rev. A 83, 032317 (2011).
- “Quantum coherence, time-translation symmetry, and thermodynamics”. Phys. Rev. X 5, 021001 (2015).
- “Limitations on the evolution of quantum coherences: Towards fully quantum second laws of thermodynamics”. Phys. Rev. Lett. 115, 210403 (2015).
- “Gibbs-preserving maps outperform thermal operations in the quantum regime”. New J. Phys. 17, 043003 (2015).
- “The extraction of work from quantum coherence”. New J. Phys. 18, 023045 (2016).
- “Fluctuating work: From quantum thermodynamical identities to a second law equality”. Phys. Rev. X 6, 041017 (2016).
- “A general derivation and quantification of the third law of thermodynamics”. Nat. Commun. 8, 14538 (2017).
- “Third law of thermodynamics as a single inequality”. Phys. Rev. X 7, 041033 (2017).
- “Surpassing the carnot efficiency by extracting imperfect work”. New J. Phys. 19, 113005 (2017).
- “Beyond the thermodynamic limit: finite-size corrections to state interconversion rates”. Quantum 2, 108 (2018).
- “Avoiding irreversibility: Engineering resonant conversions of quantum resources”. Phys. Rev. Lett. 122, 110403 (2019).
- “The maximum efficiency of nano heat engines depends on more than temperature”. Quantum 3, 177 (2019).
- “Fundamental limitations on photoisomerization from thermodynamic resource theories”. Phys. Rev. A 101, 042116 (2020).
- Naoto Shiraishi. “Two constructive proofs on d-majorization and thermo-majorization”. J Phys. A: Math. Theor. 53, 425301 (2020).
- Paweł Mazurek. “Thermal processes and state achievability”. Phys. Rev. A 99, 042110 (2019).
- “Continuous thermomajorization and a complete set of laws for markovian thermal processes”. Phys. Rev. A 106, 012426 (2022).
- “Optimizing thermalization”. Phys. Rev. Lett. 129, 040602 (2022).
- “Decomposability and convex structure of thermal processes”. New J. Phys. 20, 053040 (2018).
- “Fundamental limits on correlated catalytic state transformations”. Phys. Rev. Lett. 129, 120506 (2022).
- Jeongrak Son and Nelly H. Y. Ng. “A hierarchy of thermal processes collapses under catalysis” (2023). arXiv:2303.13020.
- “Quantum Horn’s lemma, finite heat baths, and the third law of thermodynamics”. Quantum 2, 54 (2018).
- “Thermal recall: Memory-assisted markovian thermal processes” (2023). arXiv:2303.12840.