Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matroid Intersection under Restricted Oracles (2209.14516v2)

Published 29 Sep 2022 in cs.DS and math.CO

Abstract: Matroid intersection is one of the most powerful frameworks of matroid theory that generalizes various problems in combinatorial optimization. Edmonds' fundamental theorem provides a min-max characterization for the unweighted setting, while Frank's weight-splitting theorem provides one for the weighted case. Several efficient algorithms were developed for these problems, all relying on the usage of one of the conventional oracles for both matroids. In the present paper, we consider the tractability of the matroid intersection problem under restricted oracles. In particular, we focus on the rank sum, common independence, and maximum rank oracles. We give a strongly polynomial-time algorithm for weighted matroid intersection under the rank sum oracle. In the common independence oracle model, we prove that the unweighted matroid intersection problem is tractable when one of the matroids is a partition matroid, and that even the weighted case is solvable when one of the matroids is an elementary split matroid. Finally, we show that the common independence and maximum rank oracles together are strong enough to realize the steps of our algorithm under the rank sum oracle.

Citations (4)

Summary

We haven't generated a summary for this paper yet.