Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noncommutative Differential Geometry on Infinitesimal Spaces (2209.12929v3)

Published 26 Sep 2022 in math.NA, cs.NA, math-ph, and math.MP

Abstract: In this paper, we use the language of noncommutative differential geometry to formalise discrete differential calculus. We begin with a brief review of inverse limit of posets as an approximation of topological spaces. We then show how to associate a $C*$-algebra over a poset, giving it a piecewise-linear structure. Furthermore, we explain how dually the algebra of continuous function $C(M)$ over a manifold $M$ can be approximated by a direct limit of $C*$-algebras over posets. Finally, in the spirit of noncommutative differential geometry, we define a finite dimensional spectral triple on each poset. We show how the usual finite difference calculus is recovered as the eigenvalues of the commutator with the Dirac operator. We prove a convergence result in the case of the $d$-lattice in $\mathbb{R}d$ and for the torus $\mathbb{T}d$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.