Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anytime Valid Tests of Conditional Independence Under Model-X (2209.12637v3)

Published 26 Sep 2022 in stat.ME, math.ST, and stat.TH

Abstract: We propose a sequential, anytime-valid method to test the conditional independence of a response $Y$ and a predictor $X$ given a random vector $Z$. The proposed test is based on e-statistics and test martingales, which generalize likelihood ratios and allow valid inference at arbitrary stopping times. In accordance with the recently introduced model-X setting, our test depends on the availability of the conditional distribution of $X$ given $Z$, or at least a sufficiently sharp approximation thereof. Within this setting, we derive a general method for constructing e-statistics for testing conditional independence, show that it leads to growth-rate optimal e-statistics for simple alternatives, and prove that our method yields tests with asymptotic power one in the special case of a logistic regression model. A simulation study is done to demonstrate that the approach is competitive in terms of power when compared to established sequential and nonsequential testing methods, and robust with respect to violations of the model-X assumption.

Summary

We haven't generated a summary for this paper yet.