Existence of solution for a class of fractional Hamiltonian-type elliptic systems with exponential critical growth in R (2209.12370v1)
Abstract: In this paper, we study the following class of fractional Hamiltonian systems: \begin{eqnarray*} \begin{aligned}\displaystyle \left{ \arraycolsep=1.5pt \begin{array}{ll} (-\Delta){\frac{1}{2}} u + u = \Big(I_{\mu_{1}}\ast G(v)\Big)g(v) \ \ \ & \mbox{in} \ \mathbb{R},\2mm{\frac{1}{2}} v + v = \Big(I_{\mu_{2}}\ast F(u)\Big)f(u) \ \ \ & \mbox{in} \ \mathbb{R}, \end{array} \right. \end{aligned} \end{eqnarray*} where $(-\Delta){\frac{1}{2}}$ is the square root Laplacian operator, $\mu_{1},\mu_{2}\in(0,1)$, $I_{\mu_{1}},I_{\mu_{2}}$ denote the Riesz potential, $\ast$ indicates the convolution operator, $F(s),G(s)$ are the primitive of $f(s),g(s)$ with $f(s),g(s)$ have exponential growth in $\mathbb{R}$. Using the linking theorem and variational methods, we establish the existence of at least one positive solution to the above problem.