Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressing bipartite graphs with a dual reordering scheme (2209.12062v3)

Published 24 Sep 2022 in cs.SI and cs.DS

Abstract: In order to manage massive graphs in practice, it is often necessary to resort to graph compression, which aims at reducing the memory used when storing and processing the graph. Efficient compression methods have been proposed in the literature, especially for web graphs. In most cases, they are combined with a vertex reordering pre-processing step which significantly improves the compression rate. However, these techniques are not as efficient when considering other kinds of graphs. In this paper, we focus on the class of bipartite graphs and adapt the vertex reordering phase to their specific structure by proposing a dual reordering scheme. By reordering each group of vertices in the purpose of minimizing a specific score, we show that we can reach better compression rates. We also suggest that this approach can be further refined to make the node orderings more adapted to the compression phase that follows the ordering phase.

Summary

We haven't generated a summary for this paper yet.