Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gender Bias in Fake News: An Analysis (2209.11984v3)

Published 24 Sep 2022 in cs.CY and cs.LG

Abstract: Data science research into fake news has gathered much momentum in recent years, arguably facilitated by the emergence of large public benchmark datasets. While it has been well-established within media studies that gender bias is an issue that pervades news media, there has been very little exploration into the relationship between gender bias and fake news. In this work, we provide the first empirical analysis of gender bias vis-a-vis fake news, leveraging simple and transparent lexicon-based methods over public benchmark datasets. Our analysis establishes the increased prevalance of gender bias in fake news across three facets viz., abundance, affect and proximal words. The insights from our analysis provide a strong argument that gender bias needs to be an important consideration in research into fake news.

Citations (1)

Summary

We haven't generated a summary for this paper yet.