Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stereo InSE-NET: Stereo Audio Quality Predictor Transfer Learned from Mono InSE-NET (2209.11666v1)

Published 23 Sep 2022 in eess.AS and eess.SP

Abstract: Automatic coded audio quality predictors are typically designed for evaluating single channels without considering any spatial aspects. With InSE-NET [1], we demonstrated mimicking a state-of-the-art coded audio quality metric (ViSQOL-v3 [2]) with deep neural networks (DNN) and subsequently improving it - completely with programmatically generated data. In this study, we take steps towards building a DNN-based coded stereo audio quality predictor and we propose an extension of the InSE-NET for handling stereo signals. The design considers stereo/spatial aspects by conditioning the model with left, right, mid, and side channels; and we name our model Stereo InSE-NET. By transferring selected weights from the pre-trained mono InSE-NET and retraining with both real and synthetically augmented listening tests, we demonstrate a significant improvement of 12% and 6% of Pearson and Spearman Rank correlation coefficient, respectively, over the latest ViSQOL-v3 [3].

Citations (3)

Summary

We haven't generated a summary for this paper yet.