Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Complexity of Finding Small Subgradients in Nonsmooth Optimization (2209.10346v1)

Published 21 Sep 2022 in math.OC and cs.LG

Abstract: We study the oracle complexity of producing $(\delta,\epsilon)$-stationary points of Lipschitz functions, in the sense proposed by Zhang et al. [2020]. While there exist dimension-free randomized algorithms for producing such points within $\widetilde{O}(1/\delta\epsilon3)$ first-order oracle calls, we show that no dimension-free rate can be achieved by a deterministic algorithm. On the other hand, we point out that this rate can be derandomized for smooth functions with merely a logarithmic dependence on the smoothness parameter. Moreover, we establish several lower bounds for this task which hold for any randomized algorithm, with or without convexity. Finally, we show how the convergence rate of finding $(\delta,\epsilon)$-stationary points can be improved in case the function is convex, a setting which we motivate by proving that in general no finite time algorithm can produce points with small subgradients even for convex functions.

Citations (9)

Summary

We haven't generated a summary for this paper yet.