Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk Verification of Stochastic Systems with Neural Network Controllers (2209.09881v2)

Published 26 Aug 2022 in eess.SY, cs.LG, and cs.SY

Abstract: Motivated by the fragility of neural network (NN) controllers in safety-critical applications, we present a data-driven framework for verifying the risk of stochastic dynamical systems with NN controllers. Given a stochastic control system, an NN controller, and a specification equipped with a notion of trace robustness (e.g., constraint functions or signal temporal logic), we collect trajectories from the system that may or may not satisfy the specification. In particular, each of the trajectories produces a robustness value that indicates how well (severely) the specification is satisfied (violated). We then compute risk metrics over these robustness values to estimate the risk that the NN controller will not satisfy the specification. We are further interested in quantifying the difference in risk between two systems, and we show how the risk estimated from a nominal system can provide an upper bound the risk of a perturbed version of the system. In particular, the tightness of this bound depends on the closeness of the systems in terms of the closeness of their system trajectories. For Lipschitz continuous and incrementally input-to-state stable systems, we show how to exactly quantify system closeness with varying degrees of conservatism, while we estimate system closeness for more general systems from data in our experiments. We demonstrate our risk verification approach on two case studies, an underwater vehicle and an F1/10 autonomous car.

Citations (8)

Summary

We haven't generated a summary for this paper yet.