Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty (2209.09658v2)

Published 19 Sep 2022 in cs.LG and stat.ML

Abstract: Among attempts at giving a theoretical account of the success of deep neural networks, a recent line of work has identified a so-called lazy training regime in which the network can be well approximated by its linearization around initialization. Here we investigate the comparative effect of the lazy (linear) and feature learning (non-linear) regimes on subgroups of examples based on their difficulty. Specifically, we show that easier examples are given more weight in feature learning mode, resulting in faster training compared to more difficult ones. In other words, the non-linear dynamics tends to sequentialize the learning of examples of increasing difficulty. We illustrate this phenomenon across different ways to quantify example difficulty, including c-score, label noise, and in the presence of easy-to-learn spurious correlations. Our results reveal a new understanding of how deep networks prioritize resources across example difficulty.

Citations (5)

Summary

We haven't generated a summary for this paper yet.