Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personal Attribute Prediction from Conversations (2209.09619v1)

Published 29 Aug 2022 in cs.CL and cs.AI

Abstract: Personal knowledge bases (PKBs) are critical to many applications, such as Web-based chatbots and personalized recommendation. Conversations containing rich personal knowledge can be regarded as a main source to populate the PKB. Given a user, a user attribute, and user utterances from a conversational system, we aim to predict the personal attribute value for the user, which is helpful for the enrichment of PKBs. However, there are three issues existing in previous studies: (1) manually labeled utterances are required for model training; (2) personal attribute knowledge embedded in both utterances and external resources is underutilized; (3) the performance on predicting some difficult personal attributes is unsatisfactory. In this paper, we propose a framework DSCGN based on the pre-trained LLM with a noise-robust loss function to predict personal attributes from conversations without requiring any labeled utterances. We yield two categories of supervision, i.e., document-level supervision via a distant supervision strategy and contextualized word-level supervision via a label guessing method, by mining the personal attribute knowledge embedded in both unlabeled utterances and external resources to fine-tune the LLM. Extensive experiments over two real-world data sets (i.e., a profession data set and a hobby data set) show our framework obtains the best performance compared with all the twelve baselines in terms of nDCG and MRR.

Citations (4)

Summary

We haven't generated a summary for this paper yet.