Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Adaptation of Adult-Child Facial Expressions by Fusing Landmark Features (2209.08614v2)

Published 18 Sep 2022 in cs.CV and cs.LG

Abstract: Imaging of facial affects may be used to measure psychophysiological attributes of children through their adulthood for applications in education, healthcare, and entertainment, among others. Deep convolutional neural networks show promising results in classifying facial expressions of adults. However, classifier models trained with adult benchmark data are unsuitable for learning child expressions due to discrepancies in psychophysical development. Similarly, models trained with child data perform poorly in adult expression classification. We propose domain adaptation to concurrently align distributions of adult and child expressions in a shared latent space for robust classification of either domain. Furthermore, age variations in facial images are studied in age-invariant face recognition yet remain unleveraged in adult-child expression classification. We take inspiration from multiple fields and propose deep adaptive FACial Expressions fusing BEtaMix SElected Landmark Features (FACE-BE-SELF) for adult-child expression classification. For the first time in the literature, a mixture of Beta distributions is used to decompose and select facial features based on correlations with expression, domain, and identity factors. We evaluate FACE-BE-SELF using 5-fold cross validation for two pairs of adult-child data sets. Our proposed FACE-BE-SELF approach outperforms transfer learning and other baseline domain adaptation methods in aligning latent representations of adult and child expressions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.