Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unguided Self-exploration in Narrow Spaces with Safety Region Enhanced Reinforcement Learning for Ackermann-steering Robots (2209.08349v3)

Published 17 Sep 2022 in cs.RO

Abstract: In narrow spaces, motion planning based on the traditional hierarchical autonomous system could cause collisions due to mapping, localization, and control noises, especially for car-like Ackermann-steering robots which suffer from non-convex and non-holonomic kinematics. To tackle these problems, we leverage deep reinforcement learning which is verified to be effective in self-decision-making, to self-explore in narrow spaces without a given map and destination while avoiding collisions. Specifically, based on our Ackermann-steering rectangular-shaped ZebraT robot and its Gazebo simulator, we propose the rectangular safety region to represent states and detect collisions for rectangular-shaped robots, and a carefully crafted reward function for reinforcement learning that does not require the waypoint guidance. For validation, the robot was first trained in a simulated narrow track. Then, the well-trained model was transferred to other simulation tracks and could outperform other traditional methods including classical and learning methods. Finally, the trained model is demonstrated in the real world with our ZebraT robot.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. V. Androulakis, J. Sottile, S. Schafrik, and Z. Agioutantis, “Concepts for development of autonomous coal mine shuttle cars,” IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 3272–3280, 2020.
  2. J. Q. Cui, S. K. Phang, K. Z. Ang, F. Wang, X. Dong, Y. Ke, S. Lai, K. Li, X. Li, F. Lin et al., “Drones for cooperative search and rescue in post-disaster situation,” in 2015 IEEE 7th international conference on cybernetics and intelligent systems (CIS) and IEEE conference on robotics, automation and mechatronics (RAM).   IEEE, 2015, pp. 167–174.
  3. Y. Ouyang, B. Li, Y. Zhang, T. Acarman, Y. Guo, and T. Zhang, “Fast and optimal trajectory planning for multiple vehicles in a nonconvex and cluttered environment: Benchmarks, methodology, and experiments,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 10 746–10 752.
  4. C. Sun, Q. Li, B. Li, and L. Li, “A successive linearization in feasible set algorithm for vehicle motion planning in unstructured and low-speed scenarios,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 4, pp. 3724–3736, 2021.
  5. V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.
  6. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.
  7. K. Nishi and N. Nakasu, “Evolvable motion-planning method using deep reinforcement learning,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 4079–4085.
  8. L. Xie, S. Wang, S. Rosa, A. Markham, and N. Trigoni, “Learning with training wheels: speeding up training with a simple controller for deep reinforcement learning,” in 2018 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2018, pp. 6276–6283.
  9. A. Haydari and Y. Yilmaz, “Deep reinforcement learning for intelligent transportation systems: A survey,” IEEE Transactions on Intelligent Transportation Systems, 2020.
  10. T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.
  11. T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” in International conference on machine learning.   PMLR, 2018, pp. 1861–1870.
  12. J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.
  13. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.
  14. E. W. Dijkstra, “A note on two problems in connexion with graphs,” in Edsger Wybe Dijkstra: His Life, Work, and Legacy, 2022, pp. 287–290.
  15. M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating system,” in ICRA workshop on open source software, vol. 3, no. 3.2.   Kobe, Japan, 2009, p. 5.
  16. D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.
  17. C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Trajectory modification considering dynamic constraints of autonomous robots,” in ROBOTIK 2012; 7th German Conference on Robotics.   VDE, 2012, pp. 1–6.
  18. P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity obstacles,” The international journal of robotics research, vol. 17, no. 7, pp. 760–772, 1998.
  19. J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-time multi-agent navigation,” in 2008 IEEE international conference on robotics and automation.   Ieee, 2008, pp. 1928–1935.
  20. J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-body collision avoidance,” in Robotics Research: The 14th International Symposium ISRR.   Springer, 2011, pp. 3–19.
  21. M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From perception to decision: A data-driven approach to end-to-end motion planning for autonomous ground robots,” in 2017 ieee international conference on robotics and automation (icra).   IEEE, 2017, pp. 1527–1533.
  22. O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-driven exploration for mapless navigation with deep reinforcement learning,” arXiv preprint arXiv:1804.00456, 2018.
  23. E. Marchesini and A. Farinelli, “Discrete deep reinforcement learning for mapless navigation,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 10 688–10 694.
  24. H.-T. L. Chiang, A. Faust, M. Fiser, and A. Francis, “Learning navigation behaviors end-to-end with autorl,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2007–2014, 2019.
  25. J. Zeng, R. Ju, L. Qin, Y. Hu, Q. Yin, and C. Hu, “Navigation in unknown dynamic environments based on deep reinforcement learning,” Sensors, vol. 19, no. 18, p. 3837, 2019.
  26. F. Leiva and J. Ruiz-del Solar, “Robust rl-based map-less local planning: Using 2d point clouds as observations,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5787–5794, 2020.
  27. M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic, decision-making agents with deep reinforcement learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 3052–3059.
  28. U. Patel, N. K. S. Kumar, A. J. Sathyamoorthy, and D. Manocha, “Dwa-rl: Dynamically feasible deep reinforcement learning policy for robot navigation among mobile obstacles,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 6057–6063.
  29. W. Zhang, K. Zhao, P. Li, X. Zhu, F. Ye, W. Jiang, H. Fu, and T. Wang, “Learning to navigate in a vuca environment: Hierarchical multi-expert approach,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2021, pp. 9254–9261.
  30. J. H. Reif, “Complexity of the mover’s problem and generalizations,” in 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).   IEEE Computer Society, 1979, pp. 421–427.
  31. P. Polack, L.-M. Dallen, and A. Cord, “Strategy for automated dense parking: how to navigate in narrow lanes,” in 2020 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2020, pp. 9196–9202.
  32. K. Wu, H. Wang, M. A. Esfahani, and S. Yuan, “Bnd*-ddqn: Learn to steer autonomously through deep reinforcement learning,” IEEE Transactions on Cognitive and Developmental Systems, vol. 13, no. 2, pp. 249–261, 2019.
  33. J. Zhang, J. T. Springenberg, J. Boedecker, and W. Burgard, “Deep reinforcement learning with successor features for navigation across similar environments,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 2371–2378.
  34. Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi, “Target-driven visual navigation in indoor scenes using deep reinforcement learning,” in 2017 IEEE international conference on robotics and automation (ICRA).   IEEE, 2017, pp. 3357–3364.
  35. L. Tai and M. Liu, “Towards cognitive exploration through deep reinforcement learning for mobile robots,” arXiv preprint arXiv:1610.01733, 2016.
  36. L. Xie, S. Wang, A. Markham, and N. Trigoni, “Towards monocular vision based obstacle avoidance through deep reinforcement learning,” arXiv preprint arXiv:1706.09829, 2017.
  37. L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 31–36.
  38. V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural information processing systems, vol. 12, 1999.
  39. R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods for reinforcement learning with function approximation,” Advances in neural information processing systems, vol. 12, 1999.
  40. Z. Tian and W. Shi, “Design and implement an enhanced simulator for autonomous delivery robot,” in 2022 Fifth International Conference on Connected and Autonomous Driving (MetroCAD), 2022, pp. 21–29.

Summary

We haven't generated a summary for this paper yet.