Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Transfer Learning for Real-World, Small, and High-Dimensional Datasets (2209.07799v4)

Published 16 Sep 2022 in quant-ph and cs.ET

Abstract: Quantum machine learning (QML) networks promise to have some computational (or quantum) advantage for classifying supervised datasets (e.g., satellite images) over some conventional deep learning (DL) techniques due to their expressive power via their local effective dimension. There are, however, two main challenges regardless of the promised quantum advantage: 1) Currently available quantum bits (qubits) are very small in number, while real-world datasets are characterized by hundreds of high-dimensional elements (i.e., features). Additionally, there is not a single unified approach for embedding real-world high-dimensional datasets in a limited number of qubits. 2) Some real-world datasets are too small for training intricate QML networks. Hence, to tackle these two challenges for benchmarking and validating QML networks on real-world, small, and high-dimensional datasets in one-go, we employ quantum transfer learning composed of a multi-qubit QML network, and a very deep convolutional network (a with VGG16 architecture) extracting informative features from any small, high-dimensional dataset. We use real-amplitude and strongly-entangling N-layer QML networks with and without data re-uploading layers as a multi-qubit QML network, and evaluate their expressive power quantified by using their local effective dimension; the lower the local effective dimension of a QML network, the better its performance on unseen data. Our numerical results show that the strongly-entangling N-layer QML network has a lower local effective dimension than the real-amplitude QML network and outperforms it on the hard-to-classify three-class labelling problem. In addition, quantum transfer learning helps tackle the two challenges mentioned above for benchmarking and validating QML networks on real-world, small, and high-dimensional datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, Sep 2017. [Online]. Available: https://doi.org/10.1038/nature23474
  2. S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analysis,” Nature Physics, vol. 10, no. 9, pp. 631–633, Sep 2014. [Online]. Available: https://doi.org/10.1038/nphys3029
  3. V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence in the quantum domain: a review of recent progress,” Reports on Progress in Physics, vol. 81, no. 7, p. 074001, Jun 2018. [Online]. Available: https://doi.org/10.1088/1361-6633/aab406
  4. E. M. Stoudenmire and D. J. Schwab, “Supervised learning with quantum-inspired tensor networks,” 2016. [Online]. Available: https://arxiv.org/abs/1605.05775
  5. T. Felser, M. Trenti, L. Sestini, A. Gianelle, D. Zuliani, D. Lucchesi, and S. Montangero, “Quantum-inspired machine learning on high-energy physics data,” npj Quantum Information, vol. 7, no. 1, p. 111, Jul 2021. [Online]. Available: https://doi.org/10.1038/s41534-021-00443-w
  6. P. Zheng, R. Zubatyuk, W. Wu, O. Isayev, and P. O. Dral, “Artificial intelligence-enhanced quantum chemical method with broad applicability,” Nature Communications, vol. 12, no. 1, p. 7022, Dec 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-27340-2
  7. D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen, “Support vector machines on the D-Wave quantum annealer,” Computer Physics Communications, vol. 248, p. 107006, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S001046551930342X
  8. C. Tüysüz, C. Rieger, K. Novotny, B. Demirköz, D. Dobos, K. Potamianos, S. Vallecorsa, J.-R. Vlimant, and R. Forster, “Hybrid quantum classical graph neural networks for particle track reconstruction,” Quantum Machine Intelligence, vol. 3, no. 2, p. 29, Nov 2021. [Online]. Available: https://doi.org/10.1007/s42484-021-00055-9
  9. S. Otgonbaatar and M. Datcu, “Classification of remote sensing images with parameterized quantum gates,” IEEE Geoscience and Remote Sensing Letters, vol. 19, pp. 1–5, 2022.
  10. A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner, “The power of quantum neural networks,” Nature Computational Science, vol. 1, no. 6, pp. 403–409, Jun 2021. [Online]. Available: https://doi.org/10.1038/s43588-021-00084-1
  11. A. Abbas, D. Sutter, A. Figalli, and S. Woerner, “Effective dimension of machine learning models,” 2021. [Online]. Available: https://arxiv.org/abs/2112.04807
  12. P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for big data classification,” Phys. Rev. Lett., vol. 113, p. 130503, Sep 2014. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.113.130503
  13. J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, Aug. 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
  14. M. Schuld and N. Killoran, “Quantum machine learning in feature hilbert spaces,” Phys. Rev. Lett., vol. 122, p. 040504, Feb 2019. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.122.040504
  15. P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019.
  16. A. Sebastianelli, D. A. Zaidenberg, D. Spiller, B. L. Saux, and S. L. Ullo, “On circuit-based hybrid quantum neural networks for remote sensing imagery classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 565–580, 2022.
  17. S. Otgonbaatar and M. Datcu, “Natural embedding of the Stokes parameters of polarimetric synthetic aperture radar images in a gate-based quantum computer,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–8, 2022.
  18. A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran, “Transfer learning in hybrid classical-quantum neural networks,” Quantum, vol. 4, p. 340, Oct. 2020. [Online]. Available: https://doi.org/10.22331/q-2020-10-09-340
  19. A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre, “Data re-uploading for a universal quantum classifier,” Quantum, vol. 4, p. 226, Feb. 2020. [Online]. Available: https://doi.org/10.22331/q-2020-02-06-226
  20. S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, “Quantum embeddings for machine learning,” May 2020. [Online]. Available: https://arxiv.org/abs/2001.03622
  21. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.org/abs/1409.1556
  22. M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric quantum classifiers,” Phys. Rev. A, vol. 101, p. 032308, Mar 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.101.032308
  23. T. Haug, K. Bharti, and M. Kim, “Capacity and quantum geometry of parametrized quantum circuits,” PRX Quantum, vol. 2, p. 040309, Oct 2021. [Online]. Available: https://link.aps.org/doi/10.1103/PRXQuantum.2.040309
  24. W. J. Maddox, G. Benton, and A. G. Wilson, “Rethinking parameter counting in deep models: Effective dimensionality revisited,” 2020. [Online]. Available: https://arxiv.org/abs/2003.02139
  25. Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, “Expressive power of parametrized quantum circuits,” Phys. Rev. Research, vol. 2, p. 033125, Jul 2020. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevResearch.2.033125
  26. G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, “Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 3735–3756, 2020.
  27. G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classification: Benchmark and state of the art,” Proceedings of the IEEE, vol. 105, no. 10, pp. 1865–1883, 2017.
  28. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad, S. Banning, C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. Di Matteo, A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain, E. Jiang, A. Khandelwal, K. Kottmann, R. A. Lang, C. Lee, T. Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A. Montañez-Barrera, R. Moyard, Z. Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D. Polatajko, N. Quesada, C. Roberts, N. Sá, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni, A. Száva, S. Thabet, R. A. Vargas-Hernández, T. Vincent, N. Vitucci, M. Weber, D. Wierichs, R. Wiersema, M. Willmann, V. Wong, S. Zhang, and N. Killoran, “PennyLane: Automatic differentiation of hybrid quantum-classical computations,” 2018. [Online]. Available: https://arxiv.org/abs/1811.04968
  29. J. J. Meyer, “Fisher information in noisy intermediate-scale quantum applications,” Quantum, vol. 5, p. 539, Sep 2021. [Online]. Available: https://doi.org/10.22331%2Fq-2021-09-09-539
  30. A. Ly, M. Marsman, J. Verhagen, R. Grasman, and E.-J. Wagenmakers, “A tutorial on Fisher information,” 2017. [Online]. Available: https://arxiv.org/abs/1705.01064
  31. S. Otgonbaatar and M. Datcu, “Assembly of a coreset of earth observation images on a small quantum computer,” Electronics, vol. 10, no. 20, 2021. [Online]. Available: https://www.mdpi.com/2079-9292/10/20/2482
  32. H.-Y. Huang, M. Broughton, M. Mohseni, R. Babbush, S. Boixo, H. Neven, and J. R. McClean, “Power of data in quantum machine learning,” Nature Communications, vol. 12, no. 1, p. 2631, May 2021. [Online]. Available: https://doi.org/10.1038/s41467-021-22539-9
  33. J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, “Barren plateaus in quantum neural network training landscapes,” Nature Communications, vol. 9, no. 1, p. 4812, Nov 2018. [Online]. Available: https://doi.org/10.1038/s41467-018-07090-4
  34. S. Otgonbaatar and D. Kranzlmüller, “Exploiting the quantum advantage for satellite image processing: Quantum resource estimation,” 2023.
  35. I. Glasser, R. Sweke, N. Pancotti, J. Eisert, and J. I. Cirac, “Expressive power of tensor-network factorizations for probabilistic modeling, with applications from hidden markov models to quantum machine learning,” 2019.
Citations (11)

Summary

We haven't generated a summary for this paper yet.