Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning-Based Cooperative P2P Power Trading between DC Nanogrid Clusters with Wind and PV Energy Resources (2209.07744v2)

Published 16 Sep 2022 in cs.LG, cs.SY, and eess.SY

Abstract: In replacing fossil fuels with renewable energy resources for carbon neutrality, the unbalanced resource production of intermittent wind and photovoltaic (PV) power is a critical issue for peer-to-peer (P2P) power trading. To address this issue, a reinforcement learning (RL) technique is introduced in this paper. For RL, a graph convolutional network (GCN) and a bi-directional long short-term memory (Bi-LSTM) network are jointly applied to P2P power trading between nanogrid clusters, based on cooperative game theory. The flexible and reliable DC nanogrid is suitable for integrating renewable energy for a distribution system. Each local nanogrid cluster takes the position of prosumer, focusing on power production and consumption simultaneously. For the power management of nanogrid cluster, multi-objective optimization is applied to each local nanogrid cluster with the Internet of Things (IoT) technology. Charging/discharging of an electric vehicle (EV) is executed considering the intermittent characteristics of wind and PV power production. RL algorithms, such as GCN- convolutional neural network (CNN) layers for deep Q-learning network (DQN), GCN-LSTM layers for deep recurrent Q-learning network (DRQN), GCN-Bi-LSTM layers for DRQN, and GCN-Bi-LSTM layers for proximal policy optimization (PPO), are used for simulations. Consequently, the cooperative P2P power trading system maximizes the profit by considering the time of use (ToU) tariff-based electricity cost and the system marginal price (SMP), and minimizes the amount of grid power consumption. Power management of nanogrid clusters with P2P power trading is simulated on a distribution test feeder in real time, and the proposed GCN-Bi-LSTM-PPO technique achieving the lowest electricity cost among the RL algorithms used for comparison reduces the electricity cost by 36.7%, averaging over nanogrid clusters.

Citations (2)

Summary

We haven't generated a summary for this paper yet.