Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Improving Calibration in Object Detection Under Domain Shift (2209.07601v2)

Published 15 Sep 2022 in cs.CV

Abstract: With deep neural network based solution more readily being incorporated in real-world applications, it has been pressing requirement that predictions by such models, especially in safety-critical environments, be highly accurate and well-calibrated. Although some techniques addressing DNN calibration have been proposed, they are only limited to visual classification applications and in-domain predictions. Unfortunately, very little to no attention is paid towards addressing calibration of DNN-based visual object detectors, that occupy similar space and importance in many decision making systems as their visual classification counterparts. In this work, we study the calibration of DNN-based object detection models, particularly under domain shift. To this end, we first propose a new, plug-and-play, train-time calibration loss for object detection (coined as TCD). It can be used with various application-specific loss functions as an auxiliary loss function to improve detection calibration. Second, we devise a new implicit technique for improving calibration in self-training based domain adaptive detectors, featuring a new uncertainty quantification mechanism for object detection. We demonstrate TCD is capable of enhancing calibration with notable margins (1) across different DNN-based object detection paradigms both in in-domain and out-of-domain predictions, and (2) in different domain-adaptive detectors across challenging adaptation scenarios. Finally, we empirically show that our implicit calibration technique can be used in tandem with TCD during adaptation to further boost calibration in diverse domain shift scenarios.

Citations (19)

Summary

We haven't generated a summary for this paper yet.