Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From algorithms to action: improving patient care requires causality (2209.07397v2)

Published 15 Sep 2022 in cs.LG, cs.CY, and stat.ML

Abstract: In cancer research there is much interest in building and validating outcome predicting outcomes to support treatment decisions. However, because most outcome prediction models are developed and validated without regard to the causal aspects of treatment decision making, many published outcome prediction models may cause harm when used for decision making, despite being found accurate in validation studies. Guidelines on prediction model validation and the checklist for risk model endorsement by the American Joint Committee on Cancer do not protect against prediction models that are accurate during development and validation but harmful when used for decision making. We explain why this is the case and how to build and validate models that are useful for decision making.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine. CA: a cancer journal for clinicians, 66(5):370–374, September 2016. ISSN 1542-4863. doi: 10.3322/caac.21339.
  2. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging: The Eighth Edition AJCC Cancer Staging Manual. CA: A Cancer Journal for Clinicians, 67(2):93–99, March 2017. ISSN 00079235. doi: 10.3322/caac.21388. URL http://doi.wiley.com/10.3322/caac.21388.
  3. Gene Expression Signature to Improve Prognosis Prediction of Stage II and III Colorectal Cancer. Journal of Clinical Oncology, 29(1):17–24, January 2011. ISSN 0732-183X. doi: 10/d2zq5b. URL https://ascopubs.org/doi/10.1200/JCO.2010.30.1077. 384 citations (Crossref) [2021-08-06] Publisher: Wolters Kluwer.
  4. Simplified Geriatric Assessment in Older Patients With Diffuse Large B-Cell Lymphoma: The Prospective Elderly Project of the Fondazione Italiana Linfomi. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 39(11):1214–1222, April 2021. ISSN 1527-7755. doi: 10.1200/JCO.20.02465.
  5. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nature Medicine, 25(10):1519–1525, October 2019. ISSN 1546-170X. doi: 10.1038/s41591-019-0583-3.
  6. K. Breur. Growth rate and radiosensitivity of human tumours—II: Radiosensitivity of human tumours. European Journal of Cancer (1965), 2(2):173–188, June 1966. ISSN 0014-2964. doi: 10.1016/0014-2964(66)90009-0. URL https://www.sciencedirect.com/science/article/pii/0014296466900090.
  7. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Annals of Internal Medicine, 162(1):W1, January 2015. ISSN 0003-4819. doi: 10/gfrkkz. URL http://annals.org/article.aspx?doi=10.7326/M14-0698.
  8. Prognostic impact of minimal pleural effusion in non-small-cell lung cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(9):960–967, March 2014. ISSN 1527-7755 0732-183X. doi: 10.1200/JCO.2013.50.5453. Place: United States.
  9. Stage III Non-Small Cell Lung Cancer: Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Factors. Radiology, 278(1):214–222, January 2016. ISSN 1527-1315 0033-8419. doi: 10.1148/radiol.2015142920.
  10. Development and validation of risk prediction equations to estimate survival in patients with colorectal cancer: cohort study. BMJ (Clinical research ed.), 357:j2497, June 2017. ISSN 1756-1833. doi: 10.1136/bmj.j2497.
  11. Systematic pan-cancer analysis of mutation-treatment interactions using large real-world clinicogenomics data. Nature Medicine, June 2022. ISSN 1546-170X. doi: 10.1038/s41591-022-01873-5.
  12. Clinical Models to Define Response and Survival With Anti-PD-1 Antibodies Alone or Combined With Ipilimumab in Metastatic Melanoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 40(10):1068–1080, April 2022. ISSN 1527-7755. doi: 10.1200/JCO.21.01701.
  13. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ, 338:b606, June 2009. ISSN 0959-8138, 1468-5833. doi: 10.1136/bmj.b606. URL https://www.bmj.com/content/338/bmj.b606. Publisher: British Medical Journal Publishing Group Section: Research Methods & Reporting.
  14. Shared Decision Making — The Pinnacle of Patient-Centered Care. New England Journal of Medicine, 366(9):780–781, March 2012. ISSN 0028-4793. doi: 10.1056/NEJMp1109283. URL https://doi.org/10.1056/NEJMp1109283. Publisher: Massachusetts Medical Society _eprint: https://doi.org/10.1056/NEJMp1109283.
  15. Blood pressure-lowering treatment strategies based on cardiovascular risk versus blood pressure: A meta-analysis of individual participant data. PLOS Medicine, 15(3):e1002538, March 2018. ISSN 1549-1676. doi: 10.1371/journal.pmed.1002538. URL https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002538. Publisher: Public Library of Science.
  16. Estimating individual treatment effect: generalization bounds and algorithms. arXiv:1606.03976 [cs, stat], May 2017. URL http://arxiv.org/abs/1606.03976. arXiv: 1606.03976.
  17. Judea Pearl. Causality. Cambridge University Press, September 2009.
  18. Identifying causal effects with proxy variables of an unmeasured confounder. Biometrika, 105(4):987–993, December 2018. ISSN 0006-3444. doi: 10.1093/biomet/asy038. URL https://doi.org/10.1093/biomet/asy038.
  19. Individual treatment effect estimation in the presence of unobserved confounding using proxies: a cohort study in stage III non-small cell lung cancer. Scientific Reports, 12(1):5848, April 2022. ISSN 2045-2322. doi: 10.1038/s41598-022-09775-9. URL https://www.nature.com/articles/s41598-022-09775-9. Number: 1 Publisher: Nature Publishing Group.
  20. Abraham Wald. The Fitting of Straight Lines if Both Variables are Subject to Error. The Annals of Mathematical Statistics, 11(3):284–300, September 1940. ISSN 0003-4851, 2168-8990. doi: 10.1214/aoms/1177731868. URL https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-11/issue-3/The-Fitting-of-Straight-Lines-if-Both-Variables-are-Subject/10.1214/aoms/1177731868.full. Publisher: Institute of Mathematical Statistics.
  21. Deep iv: A flexible approach for counterfactual prediction. In International Conference on Machine Learning, pages 1414–1423. PMLR, 2017.
  22. General control functions for causal effect estimation from ivs. Advances in neural information processing systems, 33:8440–8451, 2020.
  23. Sander Greenland. Basic Methods for Sensitivity Analysis of Biases. International Journal of Epidemiology, 25(6):1107–1116, December 1996. ISSN 0300-5771. doi: 10.1093/ije/25.6.1107-a. URL https://doi.org/10.1093/ije/25.6.1107-a.
  24. An updated PREDICT breast cancer prognostication and treatment benefit prediction model with independent validation. Breast Cancer Research, 19(1):58, December 2017. ISSN 1465-542X. doi: 10/gbhgpq. URL http://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-017-0852-3. 80 citations (Crossref) [2021-08-06].
  25. Wouter A. C. Van Amsterdam and Rajesh Ranganath. Conditional average treatment effect estimation with marginally constrained models. Journal of Causal Inference, 11(1):20220027, August 2023. ISSN 2193-3685. doi: 10.1515/jci-2022-0027. URL https://www.degruyter.com/document/doi/10.1515/jci-2022-0027/html.
  26. Ruth H. Keogh and Nan van Geloven. Prediction under interventions: evaluation of counterfactual performance using longitudinal observational data, January 2024. URL http://arxiv.org/abs/2304.10005. arXiv:2304.10005 [stat].
  27. When accurate prediction models yield harmful self-fulfilling prophecies, February 2024. URL http://arxiv.org/abs/2312.01210. arXiv:2312.01210 [cs, stat].
  28. Causal inference and counterfactual prediction in machine learning for actionable healthcare. Nature Machine Intelligence, 2(7):369–375, July 2020. ISSN 2522-5839. doi: 10.1038/s42256-020-0197-y. URL https://www.nature.com/articles/s42256-020-0197-y. Number: 7 Publisher: Nature Publishing Group.
  29. Prediction meets causal inference: the role of treatment in clinical prediction models. European Journal of Epidemiology, 35(7):619–630, July 2020. ISSN 1573-7284. doi: 10.1007/s10654-020-00636-1. URL https://doi.org/10.1007/s10654-020-00636-1.
Citations (1)

Summary

We haven't generated a summary for this paper yet.