Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Isogeometric analysis for multi-patch structured Kirchhoff-Love shells (2209.06713v2)

Published 14 Sep 2022 in math.NA and cs.NA

Abstract: We present an isogeometric method for Kirchhoff-Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable~$G1$ [1], and on the other hand on the use of the globally $C1$-smooth isogeometric multi-patch spline space [2]. We use our developed technique within an isogeometric Kirchhoff-Love shell formulation [3] to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex multi-patch structures which cannot be modeled without the use of extraordinary vertices.

Citations (27)

Summary

We haven't generated a summary for this paper yet.