Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted Distributed Estimation under Heterogeneity (2209.06482v1)

Published 14 Sep 2022 in math.ST and stat.TH

Abstract: This paper considers distributed M-estimation under heterogeneous distributions among distributed data blocks. A weighted distributed estimator is proposed to improve the efficiency of the standard "Split-And-Conquer" (SaC) estimator for the common parameter shared by all the data blocks. The weighted distributed estimator is shown to be at least as efficient as the would-be full sample and the generalized method of moment estimators with the latter two estimators requiring full data access. A bias reduction is formulated to the WD estimator to accommodate much larger numbers of data blocks than the existing methods without sacrificing the estimation efficiency, and a similar debiased operation is made to the SaC estimator. The mean squared error (MSE) bounds and the asymptotic distributions of the WD and the two debiased estimators are derived, which shows advantageous performance of the debiased estimators when the number of data blocks is large.

Summary

We haven't generated a summary for this paper yet.