Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ConvNeXt Based Neural Network for Audio Anti-Spoofing (2209.06434v5)

Published 14 Sep 2022 in cs.SD, cs.CL, and eess.AS

Abstract: With the rapid development of speech conversion and speech synthesis algorithms, automatic speaker verification (ASV) systems are vulnerable to spoofing attacks. In recent years, researchers had proposed a number of anti-spoofing methods based on hand-crafted features. However, using hand-crafted features rather than raw waveform will lose implicit information for anti-spoofing. Inspired by the promising performance of ConvNeXt in image classification tasks, we revise the ConvNeXt network architecture and propose a lightweight end-to-end anti-spoofing model. By integrating with the channel attention block and using the focal loss function, the proposed model can focus on the most informative sub-bands of speech representations and the difficult samples that are hard to classify. Experiments show that our proposed system could achieve an equal error rate of 0.64% and min-tDCF of 0.0187 for the ASVSpoof 2019 LA evaluation dataset, which outperforms the state-of-the-art systems.

Citations (5)

Summary

We haven't generated a summary for this paper yet.