Spectral hypergraph sparsification via chaining
Abstract: In a hypergraph on $n$ vertices where $D$ is the maximum size of a hyperedge, there is a weighted hypergraph spectral $\varepsilon$-sparsifier with at most $O(\varepsilon{-2} \log(D) \cdot n \log n)$ hyperedges. This improves over the bound of Kapralov, Krauthgamer, Tardos and Yoshida (2021) who achieve $O(\varepsilon{-4} n (\log n)3)$, as well as the bound $O(\varepsilon{-2} D3 n \log n)$ obtained by Bansal, Svensson, and Trevisan (2019). The same sparsification result was obtained independently by Jambulapati, Liu, and Sidford (2022).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.