Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Alternating Direction Method of Multipliers for Decomposable Saddle-Point Problems (2209.04536v2)

Published 9 Sep 2022 in math.OC and cs.GT

Abstract: Saddle-point problems appear in various settings including machine learning, zero-sum stochastic games, and regression problems. We consider decomposable saddle-point problems and study an extension of the alternating direction method of multipliers to such saddle-point problems. Instead of solving the original saddle-point problem directly, this algorithm solves smaller saddle-point problems by exploiting the decomposable structure. We show the convergence of this algorithm for convex-concave saddle-point problems under a mild assumption. We also provide a sufficient condition for which the assumption holds. We demonstrate the convergence properties of the saddle-point alternating direction method of multipliers with numerical examples on a power allocation problem in communication channels and a network routing problem with adversarial costs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.