Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion (2209.03855v4)

Published 8 Sep 2022 in cs.RO and cs.LG

Abstract: Multi-objective optimization problems are ubiquitous in robotics, e.g., the optimization of a robot manipulation task requires a joint consideration of grasp pose configurations, collisions and joint limits. While some demands can be easily hand-designed, e.g., the smoothness of a trajectory, several task-specific objectives need to be learned from data. This work introduces a method for learning data-driven SE(3) cost functions as diffusion models. Diffusion models can represent highly-expressive multimodal distributions and exhibit proper gradients over the entire space due to their score-matching training objective. Learning costs as diffusion models allows their seamless integration with other costs into a single differentiable objective function, enabling joint gradient-based motion optimization. In this work, we focus on learning SE(3) diffusion models for 6DoF grasping, giving rise to a novel framework for joint grasp and motion optimization without needing to decouple grasp selection from trajectory generation. We evaluate the representation power of our SE(3) diffusion models w.r.t. classical generative models, and we showcase the superior performance of our proposed optimization framework in a series of simulated and real-world robotic manipulation tasks against representative baselines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (71)
  1. N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient optimization techniques for efficient motion planning,” in IEEE International Conference on Robotics and Automation, 2009.
  2. M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp: Stochastic trajectory optimization for motion planning,” in IEEE International Conference on Robotics and Automation, 2011.
  3. J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential convex optimization and convex collision checking,” The International Journal of Robotics Research, 2014.
  4. D. Rakita, B. Mutlu, and M. Gleicher, “RelaxedIK: Real-time synthesis of accurate and feasible robot arm motion.” in Robotics: Science and Systems, 2018.
  5. T. Osa, “Motion planning by learning the solution manifold in trajectory optimization,” The International Journal of Robotics Research, 2022.
  6. A. Mousavian, C. Eppner, and D. Fox, “6-DoF graspnet: Variational grasp generation for object manipulation,” in International Conference on Computer Vision, 2019.
  7. J. Urain, M. Ginesi, D. Tateo, and J. Peters, “Imitationflows: Learning deep stable stochastic dynamic systems by normalizing flows,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020.
  8. A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitzmann, “Neural descriptor fields: Se (3)-equivariant object representations for manipulation,” in International Conference on Robotics and Automation.   IEEE, 2022.
  9. D. Koert, G. Maeda, R. Lioutikov, G. Neumann, and J. Peters, “Demonstration based trajectory optimization for generalizable robot motions,” in IEEE-RAS International Conference on Humanoid Robots, 2016.
  10. A. Lambert, A. T. Le, J. Urain, G. Chalvatzaki, B. Boots, and J. Peters, “Learning implicit priors for motion optimization,” IEEE International Conference on Intelligent Robots and Systems, 2022.
  11. A. Murali, A. Mousavian, C. Eppner, C. Paxton, and D. Fox, “6-DoF grasping for target-driven object manipulation in clutter,” in IEEE International Conference on Robotics and Automation, 2020.
  12. Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans, “Planning multi-fingered grasps as probabilistic inference in a learned deep network,” in Robotics Research, 2020.
  13. C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal control via policy optimization,” in International Conference on Machine Learning, 2016.
  14. M. Arjovsky and L. Bottou, “Towards principled methods for training generative adversarial networks,” arXiv preprint arXiv:1701.04862, 2017.
  15. T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” in International Conference on Learning Representations, 2018.
  16. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” in International Conference on Learning Representations, 2020.
  17. C. Luo, “Understanding diffusion models: A unified perspective,” 2022. [Online]. Available: https://arxiv.org/abs/2208.11970
  18. C.-W. Huang, M. Aghajohari, A. J. Bose, P. Panangaden, and A. Courville, “Riemannian diffusion models,” arXiv preprint arXiv:2208.07949, 2022.
  19. V. D. Bortoli, E. Mathieu, M. J. Hutchinson, J. Thornton, Y. W. Teh, and A. Doucet, “Riemannian score-based generative modelling,” in Advances in Neural Information Processing Systems, A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available: https://openreview.net/forum?id=oDRQGo8I7P
  20. D. Gnaneshwar, B. Ramsundar, D. Gandhi, R. Kurchin, and V. Viswanathan, “Score-based generative models for molecule generation,” arXiv preprint arXiv:2203.04698, 2022.
  21. C. Eppner, A. Mousavian, and D. Fox, “Acronym: A large-scale grasp dataset based on simulation,” in IEEE International Conference on Robotics and Automation, 2021.
  22. Y. Song and D. P. Kingma, “How to train your energy-based models,” arXiv preprint arXiv:2101.03288, 2021.
  23. M. Janner, Y. Du, J. Tenenbaum, and S. Levine, “Planning with diffusion for flexible behavior synthesis,” in International Conference on Machine Learning, 2022.
  24. Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in Neural Information Processing Systems, 2019.
  25. P. Vincent, “A connection between score matching and denoising autoencoders,” Neural computation, 2011.
  26. S. Saremi, A. Mehrjou, B. Schölkopf, and A. Hyvärinen, “Deep energy estimator networks,” arXiv preprint arXiv:1805.08306, 2018.
  27. Y. Song and S. Ermon, “Improved techniques for training score-based generative models,” Advances in Neural Information Processing Systems, 2020.
  28. R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of markov chain monte carlo, 2011.
  29. J. Sola, J. Deray, and D. Atchuthan, “A micro lie theory for state estimation in robotics,” arXiv preprint arXiv:1812.01537, 2018.
  30. G. Chirikjian and M. Kobilarov, “Gaussian approximation of non-linear measurement models on lie groups,” in IEEE Conference on Decision and Control, 2014.
  31. L. Pineda, T. Fan, M. Monge, S. Venkataraman, P. Sodhi, R. Chen, J. Ortiz, D. DeTone, A. Wang, S. Anderson et al., “Theseus: A library for differentiable nonlinear optimization,” arXiv preprint arXiv:2207.09442, 2022.
  32. B. Wen, C. Mitash, B. Ren, and K. E. Bekris, “se (3)-tracknet: Data-driven 6d pose tracking by calibrating image residuals in synthetic domains,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 10 367–10 373.
  33. Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, and Y. Zhu, “Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations,” in Robotics: Science and Systems, 2021.
  34. A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Rodriguez, P. Agrawal, and V. Sitzmann, “Neural descriptor fields: Se(3)-equivariant object representations for manipulation,” in International Conference on Robotics and Automation, 2022.
  35. J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “Deepsdf: Learning continuous signed distance functions for shape representation,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
  36. F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and L. Karlsson, “Efficiently combining task and motion planning using geometric constraints,” The International Journal of Robotics Research, 2014.
  37. M. Botvinick and M. Toussaint, “Planning as inference,” Trends in cognitive sciences, 2012.
  38. S. Levine, “Reinforcement learning and control as probabilistic inference: Tutorial and review,” arXiv preprint arXiv:1805.00909, 2018.
  39. J. Urain, P. Liu, A. Li, C. D’Eramo, and J. Peters, “Composable Energy Policies for Reactive Motion Generation and Reinforcement Learning ,” in Robotics: Science and Systems, 2021.
  40. A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., “Shapenet: An information-rich 3d model repository,” arXiv preprint arXiv:1512.03012, 2015.
  41. V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym: High performance gpu-based physics simulation for robot learning,” arXiv preprint arXiv:2108.10470, 2021.
  42. A. Tanaka, “Discriminator optimal transport,” Advances in Neural Information Processing Systems, 2019.
  43. M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox, “Contact-graspnet: Efficient 6-DoF grasp generation in cluttered scenes,” in IEEE International Conference on Robotics and Automation, 2021.
  44. A. ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp pose detection in point clouds,” The International Journal of Robotics Research, 2017.
  45. K. Rahardja and A. Kosaka, “Vision-based bin-picking: Recognition and localization of multiple complex objects using simple visual cues,” in IEEE/RSJ International Conference on Intelligent Robots and Systems., 1996.
  46. J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics,” arXiv preprint arXiv:1703.09312, 2017.
  47. L. Wang, Y. Xiang, and D. Fox, “Manipulation Trajectory Optimization with Online Grasp Synthesis and Selection,” in Robotics: Science and Systems, 2020.
  48. I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: Introducing web-scale diffusion models to robotics,” arXiv preprint arXiv:2210.02438, 2022.
  49. W. Liu, T. Hermans, S. Chernova, and C. Paxton, “Structdiffusion: Object-centric diffusion for semantic rearrangement of novel objects,” arXiv preprint arXiv:2211.04604, 2022.
  50. A. Ajay, Y. Du, A. Gupta, J. Tenenbaum, T. Jaakkola, and P. Agrawal, “Is conditional generative modeling all you need for decision-making?” arXiv preprint arXiv:2211.15657, 2022.
  51. Z. Wang, J. J. Hunt, and M. Zhou, “Diffusion policies as an expressive policy class for offline reinforcement learning,” arXiv preprint arXiv:2208.06193, 2022.
  52. Z. Zhong, D. Rempe, D. Xu, Y. Chen, S. Veer, T. Che, B. Ray, and M. Pavone, “Guided conditional diffusion for controllable traffic simulation,” arXiv preprint arXiv:2210.17366, 2022.
  53. W. Park, J. S. Kim, Y. Zhou, N. J. Cowan, A. M. Okamura, and G. S. Chirikjian, “Diffusion-based motion planning for a nonholonomic flexible needle model,” in Proceedings of the 2005 IEEE International Conference on Robotics and Automation.   IEEE, 2005, pp. 4600–4605.
  54. X. Lou, Y. Yang, and C. Choi, “Collision-aware target-driven object grasping in constrained environments,” in IEEE International Conference on Robotics and Automation, 2021.
  55. H. Liang, X. Ma, S. Li, M. Görner, S. Tang, B. Fang, F. Sun, and J. Zhang, “Pointnetgpd: Detecting grasp configurations from point sets,” in International Conference on Robotics and Automation, 2019.
  56. X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta, J. Davidson, and H. Lee, “Learning 6-DoF grasping interaction via deep geometry-aware 3d representations,” in IEEE International Conference on Robotics and Automation, 2018.
  57. J. Hager, R. Bauer, M. Toussaint, and J. Mainprice, “Graspme-grasp manifold estimator,” in 2021 30th IEEE International Conference on Robot & Human Interactive Communication, 2021.
  58. T. Weng, D. Held, F. Meier, and M. Mukadam, “Neural grasp distance fields for robot manipulation,” arXiv preprint arXiv:2211.02647, 2022.
  59. A. Dragan, G. J. Gordon, and S. Srinivasa, “Learning from experience in manipulation planning: Setting the right goals,” Robotics Research, 2017.
  60. D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A framework for pose-constrained manipulation planning,” The International Journal of Robotics Research, 2011.
  61. N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann, “Integrated grasp and motion planning,” in IEEE International Conference on Robotics and Automation.   IEEE, 2010.
  62. N. Funk, C. Schaff, R. Madan, T. Yoneda, J. U. De Jesus, J. Watson, E. K. Gordon, F. Widmaier, S. Bauer, S. S. Srinivasa et al., “Benchmarking structured policies and policy optimization for real-world dexterous object manipulation,” IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 478–485, 2021.
  63. J. Fontanals, B.-A. Dang-Vu, O. Porges, J. Rosell, and M. A. Roa, “Integrated grasp and motion planning using independent contact regions,” in IEEE-RAS International Conference on Humanoid Robots, 2014.
  64. S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,” The annual research report, 1998.
  65. D. F. Crouse, “On implementing 2d rectangular assignment algorithms,” IEEE Transactions on Aerospace and Electronic Systems, 2016.
  66. G. Sutanto, A. Wang, Y. Lin, M. Mukadam, G. Sukhatme, A. Rai, and F. Meier, “Encoding physical constraints in differentiable newton-euler algorithm,” in Machine Learning Research, 2020.
  67. M. Bhardwaj, B. Sundaralingam, A. Mousavian, N. D. Ratliff, D. Fox, F. Ramos, and B. Boots, “Storm: An integrated framework for fast joint-space model-predictive control for reactive manipulation,” in Conference on Robot Learning, 2022.
  68. Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolutional neural network for 6d object pose estimation in cluttered scenes,” in Robotics: Science and Systems, 2018.
  69. C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas, “Vector neurons: A general framework for so (3)-equivariant networks,” in IEEE/CVF International Conference on Computer Vision, 2021.
  70. Y. Xie, T. Takikawa, S. Saito, O. Litany, S. Yan, N. Khan, F. Tombari, J. Tompkin, V. Sitzmann, and S. Sridhar, “Neural fields in visual computing and beyond,” in Computer Graphics Forum, 2022.
  71. D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed iterative closest point algorithm,” in International Conference on Pattern Recognition, 2002.
Citations (93)

Summary

  • The paper introduces a novel framework that integrates diffusion models to learn smooth cost functions in SE(3) for optimizing both grasp selection and motion planning.
  • It achieves superior 6DoF grasp pose generation by outperforming traditional methods, enabling diverse and successful grasp configurations in simulated and real-world tests.
  • The joint optimization framework jointly addresses grasp and trajectory planning, paving the way for advanced autonomous manipulation in complex environments.

Overview of SE(3)-DiffusionFields for Robotic Manipulation Optimization

The research paper, titled "SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion," introduces a novel approach leveraging diffusion models to optimize robotic manipulation tasks involving complex trajectory planning and grasping strategies. The authors propose a framework that coalesces the discrete elements of grasp selection and trajectory planning into a unified optimization problem, allowing for the concurrent determination of grasp poses and robotic motions in SE(3) space. This paper addresses the challenges inherent in maintaining smooth and continuously differentiable cost functions over SE(3), paving the way for improved motion generation in real-world robotic applications.

Key Contributions

  1. Smooth Cost Functions in SE(3): The paper presents an innovative method to learn cost functions in SE(3) using diffusion models. The essence of diffusion models in this context is their capability to represent complex, multimodal distributions, which can be smoothly integrated into gradient-based optimization frameworks. The authors demonstrate that their SE(3)-DiffusionFields (SE(3)-DiF) method can effectively manage the intrinsic complexities of SE(3) manifolds.
  2. 6DoF Grasp Pose Generation: The research explores devising SE(3) models for generating six degrees of freedom (6DoF) grasp poses, a critical component in autonomous manipulation. The model's ability to yield diverse and viable grasp configurations is rigorously validated against standard grasp generative models, showcasing superior performance in both simulated environments and real-world setups.
  3. Joint Grasp and Motion Optimization: By integrating learned SE(3) diffusion models with other differentiable objectives, the authors establish a framework for joint optimization of grasp selection and movement trajectories. This integration allows for addressing multi-objective optimization scenarios where grasp suitability and trajectory efficiency are simultaneously critical.

Experimental Evaluation

The paper provides comprehensive evaluations of the proposed SE(3)-DiF methodology across multiple tasks:

  • Grasp Pose Generation: The paper evaluates the SE(3)-DiF against variational autoencoders (VAEs) and classifiers, with results indicating that the proposed diffusion approach delivers more diverse and successful grasp configurations.
  • Simulated and Real-World Manipulation Tasks: Experiments in both simulated environments and real robotic settings affirm the efficacy of SE(3)-DiF in joint trajectory and grasp optimization tasks. The proposed approach consistently demonstrates higher success rates with fewer initial samples.

Implications for Future Research

The introduction of diffusion models into SE(3) space provides a foundation for further exploration in autonomous robotic manipulation. The ability to handle the complex interactions between robot grasping and motion planning in a seamless gradient-based optimization loop marks a significant shift from traditional decoupled approaches. Future research could explore the application of SE(3)-DiF models to dynamic environments where object positions are not static. Additionally, integrating real-time sensor data for dynamic grasp adjustments and extending the diffusion model to other types of manipulators or robotic tasks could provide valuable directions for subsequent studies.

The methodology outlined in this work not only bridges gaps in current optimization paradigms but also sets a precedent for the utilization of advanced learning models in the nuanced domain of human-robot interaction.

X Twitter Logo Streamline Icon: https://streamlinehq.com