Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A second-order fully-balanced structure-preserving variational discretization scheme for the Cahn-Hilliard Navier-Stokes system (2209.03849v2)

Published 8 Sep 2022 in math.NA and cs.NA

Abstract: We propose and analyze a structure-preserving space-time variational discretization method for the Cahn-Hilliard-Navier-Stokes system. Uniqueness and stability for the discrete problem is established in the presence of concentration dependent mobility and viscosity parameters by means of the relative energy estimates and order optimal convergence rates are established for all variables using balanced approximation spaces and relaxed regularity conditions on the solution. Numerical tests are presented to demonstrate the proposed method is fully practical and yields the predicted convergence rates. The discrete stability estimates developed in this paper may also be used to analyse other discretization schemes, which is briefly outlined in the discussion.

Citations (2)

Summary

We haven't generated a summary for this paper yet.