Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tuning arrays with rays: Physics-informed tuning of quantum dot charge states (2209.03837v2)

Published 8 Sep 2022 in cond-mat.mes-hall, cs.CV, cs.LG, and quant-ph

Abstract: Quantum computers based on gate-defined quantum dots (QDs) are expected to scale. However, as the number of qubits increases, the burden of manually calibrating these systems becomes unreasonable and autonomous tuning must be used. There has been a range of recent demonstrations of automated tuning of various QD parameters such as coarse gate ranges, global state topology (e.g. single QD, double QD), charge, and tunnel coupling with a variety of methods. Here, we demonstrate an intuitive, reliable, and data-efficient set of tools for an automated global state and charge tuning in a framework deemed physics-informed tuning (PIT). The first module of PIT is an action-based algorithm that combines a machine learning classifier with physics knowledge to navigate to a target global state. The second module uses a series of one-dimensional measurements to tune to a target charge state by first emptying the QDs of charge, followed by calibrating capacitive couplings and navigating to the target charge state. The success rate for the action-based tuning consistently surpasses 95 % on both simulated and experimental data suitable for off-line testing. The success rate for charge setting is comparable when testing with simulated data, at 95.5(5.4) %, and only slightly worse for off-line experimental tests, with an average of 89.7(17.4) % (median 97.5 %). It is noteworthy that the high performance is demonstrated both on data from samples fabricated in an academic cleanroom as well as on an industrial 300 mm} process line, further underlining the device agnosticism of PIT. Together, these tests on a range of simulated and experimental devices demonstrate the effectiveness and robustness of PIT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. C. Volk, A. M. J. Zwerver, U. Mukhopadhyay, P. T. Eendebak, C. J. van Diepen, J. P. Dehollain, T. Hensgens, T. Fujita, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Loading a quantum-dot based “Qubyte” register, npj Quantum Inf. 5, 29 (2019).
  2. J. P. Zwolak and J. M. Taylor, Colloquium: Advances in automation of quantum dot devices control, Rev. Mod. Phys. 95, 011006 (2023).
  3. J. Darulová, M. Troyer, and M. C. Cassidy, Evaluation of synthetic and experimental training data in supervised machine learning applied to charge-state detection of quantum dots, Mach. Learn.: Sci. Technol. 2, 045023 (2021).
  4. National Institute of Standards and Technology, Qflow 2.0: Quantum dot data for machine learning, Database: data.nist.gov, https://doi.org/10.18434/T4/1423788 (2022).
  5. J. K. Perron, M. D. Stewart Jr, and N. M. Zimmerman, A quantitative study of bias triangles presented in chemical potential space, J. Phys.: Condens. Matter 27, 235302 (2015).
  6. Both methods are implemented in the current version of the PIT algorithm.
  7. The 20%percent2020~{}\%20 % of ray length requirement is determined by the lower bound on the distance from the peak necessary to properly identify it.
  8. W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57, 97 (1970), https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf .
  9. J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J. 7, 308 (1965).
  10. F. Gao and L. Han, Implementing the nelder-mead simplex algorithm with adaptive parameters, Comput. Optim. Appl. 51, 259 (2012).
  11. P. Pessoa, F. X. Costa, and A. Caticha, Entropic dynamics on gibbs statistical manifolds, Entropy 23, 10.3390/e23050494 (2021).
Citations (17)

Summary

We haven't generated a summary for this paper yet.