Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
96 tokens/sec
Gemini 2.5 Pro Premium
44 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
105 tokens/sec
DeepSeek R1 via Azure Premium
83 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Coherence, superposition, and Löwdin symmetric orthogonalization (2209.03746v4)

Published 8 Sep 2022 in quant-ph, math-ph, and math.MP

Abstract: The notions of coherence and superposition are conceptually the same; however, an important distinction exists between their resource-theoretic formulations. Namely, while basis states are orthogonal in the resource theory of coherence, they are not necessarily orthogonal in the resource theory of superposition. Owing to the nonorthogonality, the manipulation and characterization of superposition states require significant efforts. Here, we demonstrate that the L\"{o}wdin symmetric orthogonalization (LSO) method offers a useful means for characterizing pure superposition states. The principal property of LSO is that the structure and symmetry of the original nonorthogonal basis states are preserved to the greatest extent possible, which prompts us to study the role of LSO in identifying the hierarchical relations of resource states. Notably, we reveal that the maximally coherent states turn into the states with maximal superposition with the help of LSO: in other words, they are equivalent under the action of symmetric orthogonalization. Our results facilitate further connections between coherence and superposition, where LSO is the main tool.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)