Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Does Attention Mechanism Possess the Feature of Human Reading? A Perspective of Sentiment Classification Task (2209.03557v1)

Published 8 Sep 2022 in cs.CL and cs.HC

Abstract: [Purpose] To understand the meaning of a sentence, humans can focus on important words in the sentence, which reflects our eyes staying on each word in different gaze time or times. Thus, some studies utilize eye-tracking values to optimize the attention mechanism in deep learning models. But these studies lack to explain the rationality of this approach. Whether the attention mechanism possesses this feature of human reading needs to be explored. [Design/methodology/approach] We conducted experiments on a sentiment classification task. Firstly, we obtained eye-tracking values from two open-source eye-tracking corpora to describe the feature of human reading. Then, the machine attention values of each sentence were learned from a sentiment classification model. Finally, a comparison was conducted to analyze machine attention values and eye-tracking values. [Findings] Through experiments, we found the attention mechanism can focus on important words, such as adjectives, adverbs, and sentiment words, which are valuable for judging the sentiment of sentences on the sentiment classification task. It possesses the feature of human reading, focusing on important words in sentences when reading. Due to the insufficient learning of the attention mechanism, some words are wrongly focused. The eye-tracking values can help the attention mechanism correct this error and improve the model performance. [Originality/value] Our research not only provides a reasonable explanation for the study of using eye-tracking values to optimize the attention mechanism, but also provides new inspiration for the interpretability of attention mechanism.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lei Zhao (808 papers)
  2. Yingyi Zhang (16 papers)
  3. Chengzhi Zhang (37 papers)
Citations (2)