Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using propensity scores for racial disparities analysis (2209.03533v1)

Published 8 Sep 2022 in stat.ME and stat.AP

Abstract: Propensity score plays a central role in causal inference, but its use is not limited to causal comparisons. As a covariate balancing tool, propensity score can be used for controlled descriptive comparisons between groups whose memberships are not manipulable. A prominent example is racial disparities in health care. However, conceptual confusion and hesitation persists for using propensity score in racial disparities studies. In this commentary, we argue that propensity score, possibly combined with other methods, is an effective tool for racial disparities analysis. We describe relevant estimands, target population, and assumptions. In particular, we clarify that a controlled descriptive comparisons require weaker assumptions than a causal comparison. We discuss three common propensity score weighting strategies: overlap weighting, inverse probability weighting and average treatment effect for treated weighting. We further describe how to combine weighting with the rank-and-replace adjustment method to produce racial disparity estimates concordant to the Institute of Medicine's definition. The method is illustrated by a re-analysis of the Medical Expenditure Panel Survey data.

Summary

We haven't generated a summary for this paper yet.