Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Knowledge-enhanced Iterative Instruction Generation and Reasoning for Knowledge Base Question Answering (2209.03005v1)

Published 7 Sep 2022 in cs.CL

Abstract: Multi-hop Knowledge Base Question Answering(KBQA) aims to find the answer entity in a knowledge base which is several hops from the topic entity mentioned in the question. Existing Retrieval-based approaches first generate instructions from the question and then use them to guide the multi-hop reasoning on the knowledge graph. As the instructions are fixed during the whole reasoning procedure and the knowledge graph is not considered in instruction generation, the model cannot revise its mistake once it predicts an intermediate entity incorrectly. To handle this, we propose KBIGER(Knowledge Base Iterative Instruction GEnerating and Reasoning), a novel and efficient approach to generate the instructions dynamically with the help of reasoning graph. Instead of generating all the instructions before reasoning, we take the (k-1)-th reasoning graph into consideration to build the k-th instruction. In this way, the model could check the prediction from the graph and generate new instructions to revise the incorrect prediction of intermediate entities. We do experiments on two multi-hop KBQA benchmarks and outperform the existing approaches, becoming the new-state-of-the-art. Further experiments show our method does detect the incorrect prediction of intermediate entities and has the ability to revise such errors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Haowei Du (7 papers)
  2. Quzhe Huang (22 papers)
  3. Chen Zhang (403 papers)
  4. Dongyan Zhao (144 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.