Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Reinforcement Learning Strategy for UAV Autonomous Landing on a Platform (2209.02954v1)

Published 7 Sep 2022 in cs.RO and cs.AI

Abstract: With the development of industry, drones are appearing in various field. In recent years, deep reinforcement learning has made impressive gains in games, and we are committed to applying deep reinforcement learning algorithms to the field of robotics, moving reinforcement learning algorithms from game scenarios to real-world application scenarios. We are inspired by the LunarLander of OpenAI Gym, we decided to make a bold attempt in the field of reinforcement learning to control drones. At present, there is still a lack of work applying reinforcement learning algorithms to robot control, the physical simulation platform related to robot control is only suitable for the verification of classical algorithms, and is not suitable for accessing reinforcement learning algorithms for the training. In this paper, we will face this problem, bridging the gap between physical simulation platforms and intelligent agent, connecting intelligent agents to a physical simulation platform, allowing agents to learn and complete drone flight tasks in a simulator that approximates the real world. We proposed a reinforcement learning framework based on Gazebo that is a kind of physical simulation platform (ROS-RL), and used three continuous action space reinforcement learning algorithms in the framework to dealing with the problem of autonomous landing of drones. Experiments show the effectiveness of the algorithm, the task of autonomous landing of drones based on reinforcement learning achieved full success.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Z. Jiang (52 papers)
  2. G. Song (5 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.