Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combining Forecasts under Structural Breaks Using Graphical LASSO (2209.01697v2)

Published 4 Sep 2022 in econ.EM

Abstract: In this paper we develop a novel method of combining many forecasts based on a machine learning algorithm called Graphical LASSO (GL). We visualize forecast errors from different forecasters as a network of interacting entities and generalize network inference in the presence of common factor structure and structural breaks. First, we note that forecasters often use common information and hence make common mistakes, which makes the forecast errors exhibit common factor structures. We use the Factor Graphical LASSO (FGL, Lee and Seregina (2023)) to separate common forecast errors from the idiosyncratic errors and exploit sparsity of the precision matrix of the latter. Second, since the network of experts changes over time as a response to unstable environments such as recessions, it is unreasonable to assume constant forecast combination weights. Hence, we propose Regime-Dependent Factor Graphical LASSO (RD-FGL) that allows factor loadings and idiosyncratic precision matrix to be regime-dependent. We develop its scalable implementation using the Alternating Direction Method of Multipliers (ADMM) to estimate regime-dependent forecast combination weights. The empirical application to forecasting macroeconomic series using the data of the European Central Bank's Survey of Professional Forecasters (ECB SPF) demonstrates superior performance of a combined forecast using FGL and RD-FGL.

Summary

We haven't generated a summary for this paper yet.